Dose dumping of modified-release solid oral dosage forms
Authors:
Tomáš Bílik; Miroslava Pavelková; Kateřina Kubová; Jakub Vysloužil
Published in the journal:
Čes. slov. Farm., 2022; 71, 251-258
Category:
Review Articles
doi:
https://doi.org/https://doi.org/10.5817/CSF2022-5-251
Summary
The presented review article is a compilation of several foreign reviews and experimental papers, as well as several authority guidelines, which deal with the phenomenon of dose dumping of solid dosage forms with modified drug release. The aim of the publication is to present this often-neglected issue to a wider domestic audience. The work deals with two basic types of dose dumping, i.e., alcohol-induced dose dumping and food-induced dose dumping. It contains basic factors affecting this phenomenon as well as possible formulation solutions that can be used to eliminate it. Last but not least, the current requirements of the authorities are also mentioned, especially for testing newly introduced products with the presumed potential risk of dose dumping.
Keywords:
alcohol – dose dumping – modified release – modified release dosage forms
Zdroje
1. Murray S., Wooltorton E. Alcohol-associated rapid release of a long-acting opioid. Cmaj. 2005; 173, 756–756.
2. Walden M., Nicholls F. A., Smith K. J., Tucker, G. T. The Effect of Ethanol on the Release of Opioids from Oral Prolonged-Release Preparations. Drug Dev. Ind. Pharm. 2007; 33, 1101–1111.
3. Meyer R. J., Hussain A. S. FDA’s ACPS Meeting, October 2005, Awareness Topic: Mitigating the Risks of Ethanol Induced Dose Dumping from Oral Sustained/Controlled Release Dosage Forms. http://www.fda.gov/cder/guidance/ 5194fnl.pdf. (28. 9. 2022).
4. Food and Drug Administration. FDA/CDER to Osmotica Pharmaceutical Corp. - Petition Partial Approval and Denial. Docket No. FDA-2009-P-0403. https://www.regulations. gov/document/FDA-2009-P-0403-0003 (15. 11. 2022).
5. Bernstein K. T., Bucciarelli A., Piper T. M., Gross C., Tardiff K., Galea S. Cocaine- and opiate-related fatal overdose in New York City, 1990–2000. BMC Public Health 2007; 7, 11–12.
6. D’Souza S., Mayock S., Salt A. A review of in vivo and in vitro aspects of alcohol-induced dose dumping. AAPS Open 2017; 3, 1–20.
7. Chari S., Teyssen S., Singer M. V. Alcohol and gastric acid secretion in humans. Gut 1993; 34, 843–847.
8. Fagerberg J. H., Al-Tikriti Y., Ragnarsson G., Bergström C. A. S. Ethanol effects on apparent solubility of poorly soluble drugs in simulated intestinal fluid. Mol. Pharm. 2012; 9, 1942–1952.
9. Orrego-Lagarón N., Martínez-Huélamo M., Vallverdú-Queralt A., Lamuela-Raventos R. M., Escribano-Ferrer E. High gastrointestinal permeability and local metabolism of naringenin: influence of antibiotic treatment on absorption and metabolism. Br. J. Nutr. 2015; 114, 169–180.
10. Evonik Industries GmbH. Eudragit® brochure. https:// healthcare.evonik.com/sites/lists/NC/DocumentsHC/ Evonik-Eudragit_brochure.pdf (28. 9. 2022).
11. Mašková E., Kubová K., Vetchý D. Využití (meth)akrylátových kopolymerů v technologii matricových tablet s řízeným uvolňováním. Chem. Listy 2015; 20, 14–20.
12. Agrawal A. M., Manek R. V., Kolling W. M., Neau S. H. Studies on the interaction of water with ethylcellulose: Effect of polymer particle size. AAPS PharmSciTech, 2003; 4, 2.
13. Wasilewska K., Winnicka K. Ethylcellulose – A Pharmaceutical Excipient with Multidirectional Application in Drug Dosage Forms Development. Materials 2019; 12, 3386.
14. Ghorab M. M., Zia H., Luzzi, L. A. Preparation of controlled release anticancer agents i: 5-fluorouracil-ethyl cellulose microspheres. J. Microencapsul. 1990; 7, 447–454.
15. Rekhi G. S., Jambhekar S. S. Ethylcellulose – a polymer review. Drug Dev. Ind. Pharm. 1995; 21, 61–77.
16. Jedinger N., Khinast J., Roblegg E. The design of controlled-release formulations resistant to alcohol-induced dose dumping – A review. Eur. J. Pharm. Biopharm. 2014; 87, 217–226.
17. Missaghi S., Fegely K. A., Rajabi-Siahboomi A. R. Investigation of the effects of hydroalcoholic solutions on textural and rheological properties of various controlled release grades of hypromellose. AAPS PharmSciTech. 2009; 10, 77–80.
18. Roberts M., Cespi M., Ford J. L., Dyas A. M., Downing J., Martini L. G., Crowley P. J. Influence of ethanol on aspirin release from hypromellose matrices. Int. J. Pharm. 2007; 332, 31–37.
19. Rahim S., Al-Ghazawi M., Al-Zoubi N. Influence of ethanol on swelling and release behaviors of Carbopol®-based tablets. Pharm. Dev. Technol. 2012; 1–12.
20. Davit B., Braddy A. C., Conner D. P., Yu L. X. International guidelines for bioequivalence of systemically available orally administered generic drug products: a survey of similarities and differences. AAPS 2013; 15, 974–990.
21. European Medicines Agency. Guideline on the pharmacokinetic and clinical evaluation of modified release dosage forms. EMA/CHMP/EWP/280/96. https://www. ema.europa.eu/en/documents/scientific-guideline/guideline- pharmacokinetic-clinical-evaluation-modified-release-dosage-forms_en.pdf (28. 9. 2022).
22. European Medicines Agency. Quality of medicines questions and answers: Part 2 https://www.ema.europa.eu/en/human-regulatory/research-development/scientific- guidelines/qa-quality/quality-medicines-questions-answers-part-2 (28. 9. 2022).
23. Knopf A. Alcohol interactions with prescriptions: Limits of FDA authority. Alcohol. Drug Abus. Wkly. 2019; 31, 4–6.
24. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Bioavailability Studies Submitted in NDAs or INDs – General Considerations Guidance for Industry. https://www.fda.gov/media/121311/download (28. 9. 2022).
25. Ann T., Hebestreit G., Faham Y. Regulatory Considerations for Alcohol-Induced Dose Dumping of Oral Modified- Release Formulations. Pharm. Tech. 2015; 38, 40–46.
26. Downie K., Vagno Pedersen A. Pharmaceutical compositions and methods for mitigating risk of alcohol induced dose dumping or drug abuse. 2010; U.S. Patent Application No 12/523,045.
27. Palmer D., Levina M., Farrell T. P., Rajabi-Siahboomi A. The influence of hydro-alcoholic media on drug release from polyethylene oxide extended-release matrix tablets. Pharm Technol. 2011; 35, 50–58.
28. Mužiková J., Neprašová M. A Study of Directly Compressible Tableting Materials and Tablets with Two Types of Carbopol® Polymers. Chem. Listy 2014; 108, 237–241.
29. Rahim S., Al-Ghazawi M., Al-Zoubi N. Influence of ethanol on swelling and release behaviors of Carbopol®-based tablets. Pharm. Dev. Tech. 2013; 18, 1089–1100.
30. Park S. H., Chun M. K., Choi H. K. Preparation of an extended- release matrix tablet using chitosan/Carbopol interpolymer complex. Int. J. Pharm. 2008; 347, 39–44.
31. Levina M., Vuong H., Rajabi-Siahboomi A. R. The influence of hydro-alcoholic media on hypromellose matrix systems. Drug Dev. Ind. Pharm. 2007; 33, 1125–1134.
32. Ghori M. U., Conway B. R. Hydrophilic matrices for oral control drug delivery. Am. J. Pharmacol. Sci. 2015; 5, 103– 109.
33. Asare-Addo K., Conway B. R., Hajamohaideen M. J., Kaialy W., Nokhodchi A., Larhrib H. Aqueous and hydro-alcoholic media effects on polyols. Colloids Surf. B Biointerfaces 2013; 111, 24–29.
34. Varum F. J. O., Hatton G. B., Basit A. W. Food, physiology and drug delivery. Int. J. Pharm. 2013; 457, 446–460.
35. Koziolek M., Kostewicz E., Vertzoni M. Physiological Considerations and In Vitro Strategies for Evaluating the Influence of Food on Drug Release from Extended-Release Formulations. AAPS PharmSciTech. 2018; 19, 2885–2897.
36. Singh B. N. Effects of food on clinical pharmacokinetics. Clin. Pharmacokinet. 1999; 37, 213–255.
37. Klein S. Predicting Food Effects on Drug Release from Extended-Release Oral Dosage Forms Containing a Narrow Therapeutic Index Drug. Dissolution Technol. 2009; 16, 28–40.
38. Ramoska E. A., Spiller H. A., Myers A. Calcium channel blocker toxicity. Ann. Emerg. Med. 1990; 19, 649–653.
39. Ueno K., Kawashima S., Uemoto K., Ikada T., Miyai K., Wada K., Nakata I. Effect of Food on Nifedipine Sustained-Release Preparation. DICP 1989; 23, 662– 665.
40. Schug B., Brendel E., Wonnemann M., Wolf D., Wargenau M., Dingler A., Blume H. Dosage form-related food interaction observed in a marketed once-daily nifedipine formulation after a high-fat American breakfast. Eur. J. Clin. Pharmacol. 2002; 58, 119–125.
41. Wairkar S., Gaud R., Raghavan A. Multi-particulate systems: cutting-edge technology for controlled drug delivery. Recent Pat. Drug Deliv. Formul. 2016; 10, 184– 191.
42. Drugs.com database. Trokendi XR package insert/ prescribing information. https://www.drugs.com/pro/ trokendi-xr.html (28. 9. 2022).
43. The Center for Drug Evaluation and Research, Food and Drug Administration. Clinical pharmacology and biopharmaceutics review(s). Application number 201635Orig1s000. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/201635Orig1s000ClinPharmR. pdf (28. 9. 2022).
44. Food and Drug Administration. Metadate CD Highlights of prescribing information. https://www.accessdata. fda.gov/drugsatfda_docs/label/2022/021259s025lbl. pdf (28. 9. 2022).
45. Midha K. K., McKay G., Rawson M. J., Korchinski E. D., Hubbard J. W. Effects of Food on the Pharmacokinetics of Methylphenidate. Pharm. Res. 2001; 18, 1185–1189.
46. Modi N. B., Wang B., Hu W. T., Gupta, S. K. Effect of food on the pharmacokinetics of osmotic controlled-release methylphenidate HCl in healthy subjects. Biopharm. Drug Dispos. 2000; 21, 23–31.
47. Patrick K. S., Straughn A. B., Jarvi E. J., Breese G. R., Meyer M. C. The absorption of sustained‐release methylphenidate formulations compared to an immediate‐ release formulation. Biopharm. Drug Dispos. 1989; 10, 165–171.
Štítky
Pharmacy Clinical pharmacologyČlánok vyšiel v časopise
Czech and Slovak Pharmacy
2022 Číslo 6
Najčítanejšie v tomto čísle
- Medicinal mushrooms Ophiocordyceps sinensis and Cordyceps militaris
- The efficacy of triazavirin (riamilovir)-based treatment for coronavirus disease 2019 (COVID-19) in clinical trials and preliminary practical experiences
- Dose dumping of modified-release solid oral dosage forms
- Contribution to the concept of polypharmacy I. Etymological notes and characteristics