#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Clinical Symptoms and Laboratory Data in 75 Children with Neonatal Manifestation of Mitochondrial Disease: Proposed Diagnostic Algorithms


Authors: T. Honzík;  M. Tesařová;  H. Hansíková;  L. Wenchich;  K. Veselá;  P. Ješina;  M. Magner;  J. Zeman
Authors place of work: Klinika dětského a dorostového lékařství UK 1. LF a VFN, Praha přednosta prof. MUDr. J. Zeman, DrSc.
Published in the journal: Čes-slov Pediat 2010; 65 (7-8): 422-431.
Category: Original Papers

Summary

Mitochondrial disorders may manifest at any age. High energetic demands associated with postnatal adaptation to extrauterinne life result in frequent onset of mitochondrial disorders in nenates. The aim of this study is to analyse clinical and laboratory characteristics of mitochondrial disorders with neonatal onset. Further, we would like to propose algorithms for diagnostics of neonatal mitochondrial disorders.

Study group:
Mitochondrial disorder manifested in 75 neonates, who comprise 21% of mitochondrial desease patients diagnosed on biochemical and/or molecular genetic level at our department.

Results:
Within our study group, 36% of children were delivered prematurely, intrauterinal growth retardation was present in 40% of them and early postnatal hypotonia was observed in 95% of patients. Ventilation support was necessary in 66% of the newborns, feeding refusal and lethargy predominated in the rest of them. Hypertrophic cardiomyopathy was observed in 50% and neonatal seizures in 24% of newborns. Leigh syndrome was diagnosed in 11% of neonates. The prognosis was not favourable, one third of children died in the first three months of life. Biochemical analyses revealed lactic acidosis (93%), elevated excretion of the Krebs cycle intermediates (75%), and increased creatine kinase activity (28%). Hyperammonemia was present in 22% of the children. All newborns with Tmem70 protein deficiency exhibited higher excretion of 3-methylglutaconic acid in urine.

Conclusion:
Neonatal manifestation of mitochondrial disorders is not rare. Only the precise description of clinical signs and laboratory markers of the disease and knowledge of the most common mitochondrial defects with neonatal onset enables to diagnose the specific syndrome in the case of the child death. The diagnostic algorithm for a critically ill newborn with suspicion of mitochondrial energetic metabolism defect was prepared. This algorithm also enables to indicate direct enzymatic or mutation analysis, either with no need of muscle biopsy in some cases.

Key words:
mitochondrial disorders, neonatal onset, lactic acidosis, hypertrophic cardiomyopathy, diagnosis algorithm


Zdroje

1. Pejznochova M, Tesarova M, Hansikova H, et al. Mitochondrial DNA content and expression of genes involved in mtDNA transcription, regulation and maintenance during human fetal development. Mitochondrion 2010; Jan 20 [Epub ahead of print].

2. Honzik T, Wenchich L, Bohm M, et al. Activities of respiratory chain complexes and pyruvate dehydrogenase in isolated muscle mitochondria in premature neonates. Early Hum. Dev. 2008; 84: 269–276.

3. Schaefer AM, McFarland R, Blakely EL, et al. Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 2008; 63: 35–39.

4. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 2005; 6: 389–402.

5. Thorburn DR. Mitochondrial disorders: prevalence, myths and advances. J. Inherit. Metab. Dis. 2004; 27: 349–362.

6. Tuppen HA, Blakely EL, Turnbull DM, et al. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2009.

7. Spinazzola A, Zeviani M. Disorders of nuclear-mitochondrial intergenomic communication. Biosci. Rep. 2007; 27: 39–51.

8. Munnich A, Rustin P. Clinical spectrum and diagnosis of mitochondrial disorders. Am. J. Med. Genet. 2001; 106: 4–17.

9. Kokotas H, Petersen MB, Willems PJ. Mitochondrial deafness. Clin. Genet. 2007; 71: 379–391.

10. Makinen MW, Lee CP, Shy GM. Microanalysis of cytochrome content, oxidative and phosphorylative activities of human skeletal muscle mitochondria. Neurology 1968; 18: 299.

11. Rustin P, Chretien D, Bourgeron T, et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta 1994; 228: 35–51.

12. Pelley JW, Little GH, Linn TC, et al. Lipoamide dehydrogenase in serum: a preliminary report. Clin. Chem. 1976; 22: 275–277.

13. Constantin-Teodosiu D, Cederblad G, Hultman E. A sensitive radioisotopic assay of pyruvate dehydrogenase complex in human muscle tissue. Anal. Biochem. 1991; 198: 347–351.

14. Sue CM, Hirano M, DiMauro S, et al. Neonatal presentations of mitochondrial metabolic disorders. Semin. Perinatol. 1999; 23: 113–124.

15. von Kleist-Retzow JC, Cormier-Daire V, Viot G, et al. Antenatal manifestations of mitochondrial respiratory chain deficiency. J. Pediatr. 2003; 143: 208–212.

16. Skladal D, Sudmeier C, Konstantopoulou V, et al. The clinical spectrum of mitochondrial disease in 75 pediatric patients. Clin. Pediatr. (Phila). 2003; 42: 703–710.

17. Garcia-Cazorla A, De Lonlay P, Nassogne MC, et al. Long-term follow-up of neonatal mitochondrial cytopathies: a study of 57 patients. Pediatrics 2005; 116: 1170–1177.

18. Gibson K, Halliday JL, Kirby DM, et al. Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics 2008; 122: 1003–1008.

19. Brown GK, Brown RM, Scholem RD, et al. The clinical and biochemical spectrum of human pyruvate dehydrogenase complex deficiency. Ann. N. Y. Acad. Sci. 1989; 573: 360–368.

20. Soares-Fernandes JP, Teixeira-Gomes R, Cruz R, et al. Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings. Pediatr. Radiol. 2008; 38: 559–562.

21. Blanco-Barca O, Gomez-Lado C, Rodrigo-Saez E, et al. Pyruvate dehydrogenase deficit associated to the C515T mutation in exon 6 of the E1alpha gene. Rev. Neurol. 2006; 43: 341–345.

22. Zand DJ, Simon EM, Pulitzer SB, et al. In vivo pyruvate detected by MR spectroscopy in neonatal pyruvate dehydrogenase deficiency. Am. J. Neuroradiol. 2003; 24: 1471–1474.

23. Vogel RO, Janssen RJ, van den Brand MA, et al. Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev. 2007; 21: 615–624.

24. Vahsen N, Cande C, Briere JJ, et al. AIF deficiency compromises oxidative phosphorylation. EMBO J. 2004; 23: 4679–4689.

25. Bych K, Kerscher S, Netz DJ, et al. The iron-sulphur protein Ind1 is required for effective complex I assembly. EMBO J. 2008; 27: 1736–1746.

26. Moreadith RW, Batshaw ML, Ohnishi T, et al. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J. Clin. Invest. 1984; 74: 685–697.

27. Robinson BH, Ward J, Goodyer P, et al. Respiratory chain defects in the mitochondria of cultured skin fibroblasts from three patients with lacticacidemia. J. Clin. Invest. 1986; 77: 1422–1427.

28. Hoppel CL, Kerr DS, Dahms B, et al. Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy. J. Clin. Invest. 1987; 80: 71–77.

29. Saada A, Vogel RO, Hoefs SJ, et al. Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am. J. Hum. Genet. 2009; 84: 718–727.

30. Valnot I, Osmond S, Gigarel N, et al. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am. J. Hum. Genet. 2000; 67: 1104–1109.

31. Stiburek L, Vesela K, Hansikova H, et al. Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am. J. Physiol. Cell Physiol. 2009; 296: C1218–1226.

32. Taylor GP. Neonatal mitochondrial cardiomyopathy. Pediatr. Dev. Pathol. 2004; 7: 620–624.

33. Verdijk RM, de Krijger R, Schoonderwoerd K, et al. Phenotypic consequences of a novel SCO2 gene mutation. Am. J. Med. Genet. A 2008; 146A: 2822–2827.

34. Vesela K, Hansikova H, Tesarova M, et al. Clinical, biochemical and molecular analyses of six patients with isolated cytochrome c oxidase deficiency due to mutations in the SCO2 gene. Acta Paediatr. 2004; 93: 1312–1317.

35. Bohm M, Pronicka E, Karczmarewicz E, et al. Retrospective, multicentric study of 180 children with cytochrome c oxidase deficiency. Pediatr. Res. 2006; 59: 21–26.

36. Antonicka H, Leary SC, Guercin GH, et al. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum. Mol. Genet. 2003; 12: 2693–2702.

37. Antonicka H, Mattman A, Carlson CG, et al. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am. J. Hum. Genet. 2003; 72: 101–114.

38. Houstek J, Klement P, Hermanska J, et al. Altered properties of mitochondrial ATP-synthase in patients with a T—>G mutation in the ATPase 6 (subunit a) gene at position 8993 of mtDNA. Biochim. Biophys. Acta 1995; 1271: 349–357.

39. Houstek J, Mracek T, Vojtiskova A, et al. Mitochondrial diseases and ATPase defects of nuclear origin. Biochim. Biophys. Acta 2004; 1658: 115–121.

40. Tesarova M, Hansikova H, Hlavata A, et al. Variation in manifestations of heteroplasmic mtDNA mutation 8993 T>G in two families. Čas. Lék. čes. 2002; 141: 551–554.

41. De Meirleir L, Seneca S, Lissens W, et al. Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J. Med. Genet. 2004; 41: 120–124.

42. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988; 331: 717–719.

43. Zeviani M, Servidei S, Gellera C, et al. An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 1989; 339: 309–311.

44. Akman CI, Sue CM, Shanske S, et al. Mitochondrial DNA deletion in a child with megaloblastic anemia and recurrent encephalopathy. J. Child Neurol. 2004; 19: 258–261.

45. Morel AS, Joris N, Meuli R, et al. Early neurological impairment and severe anemia in a newborn with Pearson syndrome. Eur. J. Pediatr. 2009; 168: 311–315.

46. Spinazzola A, Invernizzi F, Carrara F, et al. Clinical and molecular features of mitochondrial DNA depletion syndromes. J. Inherit. Metab. Dis. 2009; 32: 143–158.

47. Barth PG, Valianpour F, Bowen VM, et al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am. J. Med. Genet. A 2004; 126A: 349–354.

48. Donati MA, Malvagia S, Pasquini E, et al. Barth syndrome presenting with acute metabolic decompensation in the neonatal period. J. Inherit. Metab. Dis. 2006; 29: 684.

49. Yen TY, Hwu WL, Chien YH, et al. Acute metabolic decompensation and sudden death in Barth syndrome: report of a family and a literature review. Eur. J. Pediatr. 2008; 167: 941–944.

50. Mayr JA, Merkel O, Kohlwein SD, et al. Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation. Am. J. Hum. Genet. 2007; 80: 478–484.

51. Duncan AJ, Bitner-Glindzicz M, Meunier B, et al. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am. J. Hum. Genet. 2009; 84: 558–566.

52. Rahman S, Hargreaves I, Clayton P, et al. Neonatal presentation of coenzyme Q10 deficiency. J. Pediatr. 2001; 139: 456–458.

53. Coenen MJ, Antonicka H, Ugalde C, et al. Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N. Engl. J. Med. 2004; 351: 2080–2086.

54. Smeitink JA, Elpeleg O, Antonicka H, et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am. J. Hum. Genet. 2006; 79: 869–877.

55. Valente L, Tiranti V, Marsano RM, et al. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am. J. Hum. Genet. 2007; 80: 44–58.

56. Miller C, Saada A, Shaul N, et al. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann. Neurol. 2004; 56: 734–738.

57. Saada A, Shaag A, Arnon S, et al. Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J. Med. Genet. 2007; 44: 784–786.

58. Cizkova A, Stranecky V, Ivanek R, et al. Development of a human mitochondrial oligonucleotide microarray (h-MitoArray) and gene expression analysis of fibroblast cell lines from 13 patients with isolated F1Fo ATP synthase deficiency. BMC Genomics 2008; 9: 38.

59. Cizkova A, Stranecky V, Mayr JA, et al. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat. Genet. 2008; 40: 1288–1290.

60. Morava E, van den Heuvel L, Hol F, et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology 2006; 67: 1823–1826.

Štítky
Neonatology Paediatrics General practitioner for children and adolescents

Článok vyšiel v časopise

Czech-Slovak Pediatrics

Číslo 7-8

2010 Číslo 7-8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#