#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Molecular genetics, phenotypic diversity and recent trends of personalized medicine in phenylketonuria


Authors: E. Polák 1;  O. Ürge 2;  Ľ. Kádaši 1,3
Authors place of work: Katedra molekulárnej biológie, Prírodovedecká fakulta Univerzity Komenského, Bratislava vedúci prof. RNDr. J. Turňa, CSc. 1;  Klinika pre deti a dorast A. Gentlíka, Slovenská zdravotnícka univerzita NsP sv. Cyrila a Metoda, Bratislava prednostka doc. MUDr. K. Furková, CSc., mim. prof. 2;  Molekulárno-medicínske centrum, Slovenská akadémia vied, Bratislava riaditeľ MUDr. M. Vlček, PhD. 3
Published in the journal: Čes-slov Pediat 2015; 70 (6): 333-341.
Category: Review

Summary

Phenylketonuria is a rare inborn error of amino acid metabolism presenting with autosomal recessive pattern. In the majority of cases, PKU is caused by mutations in the phenylalanine hydroxylase gene (PAH), which catalyses the essential hydroxylation of phenylalanine (Phe) to tyrosine (Tyr) in the presence of its natural cofactor - tetrahydrobiopterin (BH4). In this paper we review the recent knowledge of molecular genetics of PKU, trends in research and we also discuss the molecular diagnostic approaches in this disease. Intensive research has been conducted in the last decade in order to determine the relationship between patients' genotype and clinical picture of the patient, as well as to most accurately assign the relationship of genotype and patients' responsiveness to tetrahydrobiopterin treatment.

In this article we review the recent knowledge of genotype-phenotype correlations and we discuss possible causes of inconsistencies observed in many studies. In addition, we cite the latest findings regarding personalized therapy in PKU regarding cofactor treatment and we also discuss the limitations of genotype-based predictions of BH4 responsiveness. Besides, we bring up the latest data from molecular-genetic studies in Slovakia as well as the spectrum of most frequent mutations and genotypes identified in the Slovak population. This data could be useful for all clinical workplaces in Slovakia.

Key words:
PKU, PAH, HPA, BH4 – responsiveness, mutations, genotype-phenotype correlations


Zdroje

1. Eisensmith RC, Woo SL. Molecular basis of phenylketonuria and related hyperphenylalaninemias: mutations and polymorphisms in the human phenylalanine hydroxylase gene. Hum Mutat 1992; 1: 13–23.

2. Thony B, Blau N. Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat 2006; 27: 870–878.

3. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet 2010; 376: 1417–1427.

4. Zschocke J. Phenylketonuria mutations in Europe. Hum Mutat 2003; 21: 345–356.

5. Votava F, Kožich V, Chrastina P. Výsledky rozšířeného novorozeneckého screeningu v České republice. Čes-slov Pediat 2014; 69 (2): 77–86.

6. Scriver CR. The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat 2007; 28: 831–845.

7. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of mewborn infants. Pediatrics 1963; 32: 338–343.

8. Chace DH, Sherwin JE, Hillman SL, et al. Use of phenylalanine-to-tyrosine ratio determined by tandem mass spectrometry to improve newborn screening for phenylketonuria of early discharge specimens collected in the first 24 hours. Clin Chem 1998; 44: 2405–2409.

9. Blau N, Hennermann JB, Langenbeck U, et al. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab 2011; 104 (Suppl): S2–9.

10. Zerjav Tansek M, Groselj U, Angelkova N, et al. Phenylketonuria screening and management in southeastern Europe – survey results from 11 countries. Orphanet J Rare Dis 2015; 10: 68.

11. Guldberg P, Rey F, Zschocke J, et al. A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet 1998; 63: 71–79.

12. van Spronsen FJ, van Rijn M, Dorgelo B, et al. Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU. J Inherit Metab Dis 2009; 32: 27–31.

13. Polak E, Ficek A, Radvanszky J, et al. Phenylalanine hydroxylase deficiency in the Slovak population: genotype-phenotype correlations and genotype-based predictions of BH4-responsiveness. Gene 2013; 526: 347–355.

14. Groselj U, Tansek MZ, Kovac J, et al. Five novel mutations and two large deletions in a population analysis of the phenylalanine hydroxylase gene. Mol Genet Metab 2012; 106: 142–148.

15. Sterl E, Paul K, Paschke E, et al. Prevalence of tetrahydrobiopterine (BH4)-responsive alleles among Austrian patients with PAH deficiency: comprehensive results from molecular analysis in 147 patients. J Inherit Metab Dis 2013; 36: 7–13.

16. Mitchell JJ, Trakadis YJ, Scriver CR. Phenylalanine hydroxylase deficiency. Genet Med 2011; 13: 697–707.

17. Blau N, Bonafe L, Thony B. Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Mol Genet Metab 2001; 74: 172–185.

18. Longo N. Disorders of biopterin metabolism. J Inherit Metab Dis 2009; 32: 333–342.

19. Lidsky AS, Law ML, Morse HG, et al. Regional mapping of the phenyl-alanine hydroxylase gene and the phenylketonuria locus in the human genome. Proc Natl Acad Sci U S A 1985; 82: 6221–6225.

20. Woo SL, Lidsky AS, Guttler F, et al. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 1983; 306: 151–155.

21. Konecki DS, Wang Y, Trefz FK, et al. Structural characterization of the 5’ regions of the human phenylalanine hydroxylase gene. Biochemistry 1992; 31: 8363–8368.

22. Wang Y, Hahn TM, Tsai SY, et al. Functional characterization of a unique liver gene promoter. J Biol Chem 1994; 269: 9137–9146.

23. Lichter-Konecki U, Hipke CM, Konecki DS. Human phenylalanine hydroxylase gene expression in kidney and other nonhepatic tissues. Mol Genet Metab 1999; 67: 308–316.

24. Lei XD, Kaufman S. Identification of hepatic nuclear factor 1 binding sites in the 5’ flanking region of the human phenylalanine hydroxylase gene: implication of a dual function of phenylalanine hydroxylase stimulator in the phenylalanine hydroxylation system. Proc Natl Acad Sci U S A 1998; 95: 1500–1504.

25. Dobrowolski SF, Andersen HS, Doktor TK, et al. The phenylalanine hydroxylase c.30C>G synonymous variation (p.G10G) creates a common exonic splicing silencer. Mol Genet Metab 2010; 100: 316–323.

26. Scriver CR, Hurtubise M, Konecki D, et al. PAHdb 2003: what a locus-specific knowledgebase can do. Hum Mutat 2003; 21: 333–344.

27. Kozak L, Hrabincova E, Kintr J, et al. Identification and characterization of large deletions in the phenylalanine hydroxylase (PAH) gene by MLPA: evidence for both homologous and non-homologous mechanisms of rearrangement. Mol Genet Metab 2006; 89: 300–309.

28. Waters PJ, Parniak MA, Nowacki P, et al. In vitro expression analysis of mutations in phenylalanine hydroxylase: linking genotype to phenotype and structure to function. Hum Mutat 1998; 11: 4–17.

29. Pey AL, Stricher F, Serrano L, et al. Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases. Am J Hum Genet 2007; 81: 1006–1024.

30. Gersting SW, Kemter KF, Staudigl M, et al. Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet 2008; 83: 5–17.

31. Dobrowolski SF, Heintz C, Miller T, et al. Molecular genetics and impact of residual in vitro phenylalanine hydroxylase activity on tetrahydrobiopterin responsiveness in Turkish PKU population. Mol Genet Metab 2011; 102: 116–121.

32. Channon S, Mockler C, Lee P. Executive functioning and speed of processing in phenylketonuria. Neuropsychology 2005; 19: 679–686.

33. Feldmann RE Jr, Maurer MH, Hunzinger C, et al. Reduction in rat phosphatidylethanolamine binding protein-1 (PEBP1) after chronic corticosterone treatment may be paralleled by cognitive impairment: a first study. Stress 2008; 11: 134–147.

34. Procházková D. Současné možnosti léčby hyperfenylalaninémie. Čes-slov Pediat 2010; 65 (7–8): 452–458.

35. Kure S, Hou DC, Ohura T, et al. Tetrahydrobiopterin-responsive phenyl-alanine hydroxylase deficiency. J Pediatr 1999; 135: 375–378.

36. Blau N, Erlandsen H. The metabolic and molecular bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol Genet Metab 2004; 82: 101–111.

37. Underhaug J, Aubi O, Martinez A. Phenylalanine hydroxylase misfolding and pharmacological chaperones. Curr Top Med Chem 2012; 12: 2534–2545.

38. Cerreto M, Cavaliere P, Carluccio C, et al. Natural phenylalanine hydroxylase variants that confer a mild phenotype affect the enzyme’s conformational stability and oligomerization equilibrium. Biochim Biophys Acta 2011; 1812: 1435–1445.

39. Keil S, Anjema K, van Spronsen FJ, et al. Long-term follow-up and outcome of phenylketonuria patients on sapropterin: a retrospective study. Pediatrics 2013; 131: e1881–1888.

40. Muntau AC, Leandro J, Staudigl M, et al. Innovative strategies to treat protein misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators. J Inherit Metab Dis 2014; 37: 505–523.

41. Wettstein S, Underhaug J, Perez B, et al. Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria. Eur J Hum Genet 2015; 23: 302–309.

42. Leandro J, Leandro P, Flatmark T. Heterotetrameric forms of human phenylalanine hydroxylase: co-expression of wild-type and mutant forms in a bicistronic system. Biochim Biophys Acta 2011; 1812: 602–612.

43. Leandro J, Nascimento C, de Almeida IT, et al. Co-expression of different subunits of human phenylalanine hydroxylase: evidence of negative interallelic complementation. Biochim Biophys Acta 2006; 1762: 544–550.

44. Zschocke J, Preusse A, Sarnavka V, et al. The molecular basis of phenylalanine hydroxylase deficiency in Croatia. Hum Mutat 2003; 21: 399.

45. Scriver CR, Waters PJ. Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet 1999; 15: 267–272.

46. Stojiljkovic M, Zukic B, Tosic N, et al. Novel transcriptional regulatory element in the phenylalanine hydroxylase gene intron 8. Mol Genet Metab 2010; 101: 81–83.

47. Zurfluh MR, Zschocke J, Lindner M, et al. Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum Mutat 2008; 29: 167–175.

48. Trefz FK, Scheible D, Gotz H, et al. Significance of genotype in tetrahydrobiopterin-responsive phenylketonuria. J Inherit Metab Dis 2009; 32: 22–26.

49. Tansek MZ, Groselj U, Murko S, et al. Assessment of tetrahydrobiopterin (BH(4))-responsiveness and spontaneous phenylalanine reduction in a phenylalanine hydroxylase deficiency population. Mol Genet Metab 2012; 107: 37–42.

50. Quirk ME, Dobrowolski SF, Nelson BE, et al. Utility of phenylalanine hydroxylase genotype for tetrahydrobiopterin responsiveness classification in patients with phenylketonuria. Mol Genet Metab 2012; 107: 31–36.

51. Gersting SW, Staudigl M, Truger MS, et al. Activation of phenylalanine hydroxylase induces positive cooperativity toward the natural cofactor. J Biol Chem 2010; 285: 30686–30697.

52. Staudigl M, Gersting SW, Danecka MK, et al. The interplay between genotype, metabolic state and cofactor treatment governs phenylalanine hydroxylase function and drug response. Hum Mol Genet 2011; 20: 2628–2641.

53. Danecka MK, Woidy M, Zschocke J, et al. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. J Med Genet 2015; 52: 175–185.

54. Kadasi L, Polakova H, Ferakova E, et al. PKU in Slovakia: mutation screening and haplotype analysis. Hum Genet 1995; 95: 112–114.

55. Ferakova E, Ferak V, Kadasi L, et al. A unique RFLP haplotype at the phenylalanine hydroxylase locus in Czechoslovak Gypsies with phenylketonuria. Funct Dev Morphol 1992; 2: 139–140.

56. Polák E, Ficek A, Baldovič M, et al. Komplexná mutačná analýza génu PAH u slovenských pacientov postihnutých fenylketonúriou. Čes-slov Pediat 2008; 63 (10): 528–534.

Štítky
Neonatology Paediatrics General practitioner for children and adolescents
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#