#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Volumometric corrections of vertebral DXA scans in children with juvenile idiopathic arthritis


Authors: L. Turoňová 1;  K. Kubejová 2;  J. Vojtková 1;  K. Vorčáková 3;  E. Hyrdelová 1
Authors place of work: Klinika detí a dorastu JLF UK a UNM, Martin 1;  Klinika detí a dorastu DFN, Košice 2;  Dermatovenerologická klinika JLF UK a UNM, Martin 3
Published in the journal: Čes-slov Pediat 2017; 72 (6): 333-340.
Category: Original Papers

Summary

Objective:
To correct the changes in BMD associated with expected growth delay in children with juvenile idiopathic arthritis (JIA) by determining of volumometric DXA parameters, provided that vBMD (volumetric BMD) of a child with a chronic disease (even at delayed growth) may under certain conditions also be ideal and set the estimation of these parameters for concrete stages of puberty.

Methods:
In association with delay in growth and maturation of the skeleton the expected decrease of aBMD (areal BMD) in children with JIA was corrected by determining the BMAD (bone mineral apparent density) and WA BMD (width-adjusted BMD) vertebral DXA parameters, which have been obtained by using subsequent calculation of outputs derived from PA DXA scans (Hologic) and paired PA and lateral DXA scans (L2–L4). Outcomes were evaluated in 60 children with JIA and compared to the control group of healthy children (n=60).

Results:
Significant decrease of the mean PA BMD values in children with JIA (0.206±0.06) when compared to the control group (0.602±0.08, p<0.005) have been detected. After determining the volumetric DXA corrections, however, mean values of BMAD as well as of WA BMD parameter did not differ significantly between the JIA group and healthy controls (BMAD 0.12±0.06 in patients with JIA vs. 0.13±0.07 in the group of healthy children, p=0.73, WA BMD 0.19±0.05 in children with JIA vs. 0.20±0.07 in the control group, p=0.86). We state, that although decrease of PA BMD Z-score <-2SD in 17 (28.3%) in children with JIA has been noticed, after determining the volumetric calculations, only 8 (13.33%) JIA subjects with a significant decrease vBMD when compared to the control group have been identified, evaluated by PA scan (BMAD), as well as by pairing of PA and lateral DXA scan (WA BMD). Likewise, in comparison with Tanner stages 1–5 we state, that WA BMD seems to be more sensitive DXA parameter in association with changes of growth and sexual maturation when compared to BMAD. We also declare its sharper pace of increase during concrete Tanner stages.

Conclusion:
Reduction in BMD based solely on evaluation of PA DXA scans may in a child with a chronic illness (limiting growth) represent a diagnosis significantly overstated, often given incorrectly, ie even assuming the ideal values of vBMD.

Key words:
aBMD, BMAD, WA BMD, growth, juvenile idiopathic arthritis


Zdroje

1. Tatoń G, Rokita E, Wróbel A, et al. Combining areal DXA bone mineral density and vertebrae postero-anterior width improves the prediction of vertebral strength. Skeletal Radiol 2013; 42 (12): 1717–1725.

2. Cole JH, Scerpella TA, van der Meulen MC. Fan-beam densitometry of the growing skeleton: are we measuring what we think we are? J Clin Densitom 2005; 8 (1): 57–64.

3. Lebl J. Malý vzrůst. Čes-slov Pediat 2014; 69 (1): 47–50.

4. Leonard MB, Zemel BS. Current concepts in pediatric bone disease. Pediatr Clin North Am 2002; 49 (1): 143–173.

5. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992; 7: 137–145.

6. Kroger H, Kontaniemi A, Vainio P, Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner 1992; 17: 75–85.

7. Antoniazzi F, Zamboni G, Bertoldo F, et al. Bone mass at final height in precocious puberty aftergonadotropin-releasing hormone agonist with and without calcium supplementation. J Clin Endocrinol Metab 2003; 88 (3): 1096–1101.

8. Petty RE, Southwood TR, Manners P, et al. International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 2004; 31 (2): 390–392.

9. Singh G, Athreya BH, Fries JF, et al. Measurement of health status in children with juvenile rheumatoid arthritis. Arthritis Rheum 1994; 37 (12): 1761–1769.

10. Giannini EG, Ruperto N, Ravelli A, Lovell DJ, et al. Preliminary definition of improvement in juvenile arthritis. Arthritis Rheum 1997; 40 (7): 1202–1209.

11. Gilsanz V, Kovanlikaya A, Costin G, et al. Differential effect of gender on thesizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab 1997; 82 (5): 1603–1607.

12. Gilsanz V, Skaggs DL, Kovanlikaya A, et al. Differential effect of race on the axial and appendicularskeletons of children. J Clin Endocrinol Metab 1998; 83 (5): 1420–1427.

13. Finkelstein JS, Cleary RL, Butler JP, et al. A comparison of lateral versus anterior-posterior spine dual energy x-ray absorptiometry for the diagnosis of osteopenia. J Clin Endocrinol Metab 1994; 78 (3): 724–730.

14. Grampp S, Genant HK, Mathur A, et al. Comparisons of noninvasive bone mineral measurements inassessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 1997; 12 (5): 697–711.

15. Zmuda JM, Cauley JA, Glynn NW, et al. Posterior-anterior and lateral dual-energy x-ray absorptiometry for the assessment of vertebral osteoporosis and bone loss among older men. J Bone Miner Res 2000; 15 (7): 1417–1424.

16. Jergas M, Breitenseher M, Gluer CC, et al. Estimates of volumetric bone density fromprojectional measurements improve the discriminatory capability of dual x-ray absorptiometry. J Bone Miner Res 1995; 10 (7): 1101–1110.

17. Edwards WB, Troy KL. Number crunching: how and when will numerical models be used in the clinical setting? Curr Osteoporos Rep 2011; 9 (1): 1–3.

18. Varechova S, Durdik P, Cervenkova V, et al. The influence of autonomic neuropathy on cough reflex sensitivity in children with diabetes mellitus type 1. J Physiol Pharmacol 2007; 58 (5): 705–715.

19. Matějek T, Navrátilová M, Kokštein Z, et al. Metabolické kostní onemocnění při nezralosti. Čes-slov Pediat 2015; 70 (5): 303–312.

20. Gordon CM, Leonard MB, Zemel BS. International Society for Clinical Densitometry. 2013 Pediatric Position Development Conference: Executive summary and reflections. J Clin Densitom 2014; 17: 219–224.

21. Schoenau E. The „functional muscle-bone unit“: A two- step diagnostic algorithm in pediatric bone disease. Pediatr Nephrol 2005; 20 (3): 356–359.

22. Nahar VK, Nelson KM, Ford MA, et al. Predictors of bone mineral density among Asian Indians in Northern Mississippi: A pilot study. J Res Health Sci 2016; 16 (4): 228–232.

23. Dall’Ara E, Pahr D, Varga P, et al. QCT-based finite elementmodels predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int 2012; 23 (2): 563–572.

24. Jakusova L, Jesenak M, Schudichova J, et al. Bone metabolism in cow milk allergic children. Indian Pediatr 2013; 50 (7): 706.

25. Leonard MB, Shults J, Zemel BS. DXA estimates of vertebral volumetric bone mineral density in children: potential advantages of paired posteroanterior and lateral scans. J Clin Densitom 2006; 9: 265–273.

26. Dowthwaite JN, Rosenbaum PF, Scerpella TA. Mechanical loading during growth is associated with plane-specific differences in vertebral geometry: a cross-sectional analysis comparing artistic gymnasts vs. non-gymnasts. Bone 2011; 49: 1046–1054.

27. Wren TA, Liu X, Pitukcheewanont P, et al. Bone densitometry in pediatric populations: discrepancies in the diagnosis of osteoporosis by DXA and CT. J Pediatr 2005; 46 (6): 776–779.

28. Jergas M, Breitenseher M, Glüer CC, et al. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 1995; 10 (7): 1101–1110.

29. Zemel B, Bass S, Binkley T, et al. Peripheral quantitative computed tomography in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 2008; 11: 59–74.

30. Fonseca A, Gordon CL, Barr RD. Peripheral quantitative computed tomography (pQCT) to assess bone health in children, adolescents, and young adults: a review of normative data. J Pediatr Hematol Oncol 2013; 35: 581–589.

31. Cheung AM, Adachi JD, Hanley DA, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep 2013; 11: 136–146.

32. ChevalleyT, Bonjour JP, Audet MC, et al. Fracture prospectively recorded from pre-puberty to young adulthood: Are they markers of peak bone mass and strength in males? J Bone Miner Res 2017 Sep; 32 (9): 1963–1969. doi: 10.1002/jbmr.3174. [Epub 2017 Jun 12].

33. Gordon CM, Bachrach LK, Carpenter TO, et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 2008 Jan-Mar; 11 (1): 43–58.

34. Veselá PK, Kaniok R, Bayer M. Markers of bone metabolism, serum leptin levels and bone mineral density in preterm babies. J Pediatr Endocrinol Metab 2016; 29 (1): 27–32.

35. Kutilek S, Bayer M. Quantitative ultrasonometry of the calcaneus in children with osteogenesis imperfecta. J Paediatr Child Health 2010; 46 (10): 592–594.

Štítky
Neonatology Paediatrics General practitioner for children and adolescents
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#