#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Immune response in the pathogenesis of hepatitis C virus infection


Authors: P. Chalupa 1,2;  M. Holub 1,2;  A. Davidová 1,2;  S. Arientová 1,2;  O. Beran 1,2
Authors place of work: Klinika infekčních a tropických nemocí, 1. lékařská fakulta, Univerzita Karlova v Praze a Nemocnice Na Bulovce 1;  Klinika infekčních nemocí, 1. lékařská fakulta, Univerzita Karlova v Praze a Ústřední vojenská nemocnice – Vojenská fakultní nemocnice Praha 2
Published in the journal: Epidemiol. Mikrobiol. Imunol. 64, 2015, č. 4, s. 198-203
Category: Review Article

Summary

The pathogenesis of hepatitis C virus (HCV) infection is regulated by the host immunity and several metabolic factors affecting liver metabolism, including oxidative stress, insulin resistance, and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV infection. Cytotoxic lymphocytes have a crucial role in viral eradication or viral persistence. Major cause of viral persistence during HCV infection could be the development of a weak antiviral immune response to the viral antigens, with corresponding inability to eradicate infected cells.

Keywords:
hepatitis C virus – pathogenesis – immunity – Th1 immune response – Th2 immune response – regulatory T cells – Tregs/Th17 ratio – IFN-γ – TNF-α – IL-2 – IL-10 – TGF-β


Zdroje

1. Choo QL, Kuo G, Weiner AJ, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science, 1989;244(4902):359–362.

2. Kuo G, Choo QL, Alter HJ, et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science, 1989;244(4902):362–364.

3. Hanafiah KH, Groeger J, Flaxman AD, et al. Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to HCV seroprevalence. Hepatology, 2013;57(4):1333–1342.

4. Major ME, Feinstone SM. The molecular virology of hepatitis C. Hepatology, 1997;25(6):1527–1538.

5. Simmonds P. Variability of hepatitis-C virus. Hepatology, 1995;21(2):570–583.

6. Moderator: Liang TJ; Discussants: Rehermann B, Seeff LB, and Hoofnagle JH. Pathogenesis, Natural History, Treatment, and Prevention of Hepatitis C. Ann Intern Med, 2000;132(4):296–305.

7. Irshad M, Mankotia DS, Irshad K. An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J Gastroenterol, 2013;19(44):7896–7909.

8. Weiner AJ, Brauer MJ, Rosenblatt J, et al. Variable and hypervariable domains are found in the regions of HCV coresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology, 1991;180(2):842–848.

9. Farci P, Shimoda A, Coiana A, et al. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science, 2000;288(5464):339–344.

10. Cerny A, Chisari FV. Pathogenesis of chronic hepatitis C: Immunological features of hepatic injury and viral persistence. Hepatology, 1999;30(3):595–601.

11. Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev, 2001;14(4):778–809.

12. Liu YJ, Kanzler H, Soumelis V, et al. Dendritic cell lineage, plasticity and cross-regulation. Nature Immunology, 2001;2(7):585–589.

13. Watarai H, Sekine E, Inoue S, et al. PDC-TREM, a plasmacytoid dendritic cell-specific receptor, is responsible for augmented production of type I interferon. Proc Natl Acad Sci USA, 2008;105(8):2993–2998.

14. Haid S, Grethe C, Dill MT, et al. Isolate-Dependent Use of Claudins for Cell Entry by Hepatitis C Virus. Hepatology, 2014;59(1):24–34.

15. Flint M, Maidens C, Loomis-Price LD, et al. Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. J Virol, 1999;73(8):6235–6244.

16. Roccasecca R, Ansuini H, Vitelli A, et al. Binding of the hepatitis C virus E2 glycoprotein to CD81 is strain specific and is modulated by a complex interplay between hypervariable regions 1 and 2. J Virol, 2003;77(3):1856–1867.

17. Saito T, Owen DM, Jiang F, et al. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature, 2008;454(7203):523–527.

18. Liu HM, Gale M. Hepatitis C Virus Evasion from RIG-I-Dependent Hepatic Innate Immunity. Gastroent Res Pract, 2010;art. no.548390.

19. Saito T, Gale M. Regulation of innate immunity against hepatitis C virus infection. Hepatol Res, 2008;38(2):115–122.

20. Saito T, Gale M. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity. J Exp Med, 2008;205(7):1523–1527.

21. Golden-Mason L, Rosen HR. Natural killer cells: multifaceted players with key roles in hepatitis C immunity. Immunol Rev, 2013;255(Special Issue):68–81.

22. Schoggins JW, Rice CM. Innate Immune Responses to Hepatitis C Virus. Edited by: Bartenschlager R. In: Hepatitis C virus: from molecular virology to antiviral therapy. Book Series: Current Topics in Microbiology and Immunology, 2013;369: 219–242.

23. Loo YM, Owen DM, Li K, et al. Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci USA, 2006;103(15):6001–6006.

24. Bettelli E, Korn T, Oukka M, et al. Induction and effector functions of T(H)17 cells. Nature, 2008;453(7198):1051–1057.

25. Hao C, Zhou Y, He Y, et al. Imbalance of regulatory T cells and Th17 cells in patients with chronic hepatitis C. Immunology, 2014;143(4):531–538.

26. Zinkernagel RM, Haenseler E, Leist T, et al. T-cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus – liver-cell destruction by H-2 class I-restricted virus-specific cytotoxic T-cells as a physiological correlate of the Cr-51 release assay. J Exp Med, 1986;164(4):1075–1092.

27. Neumann-Haefelin C, Thimme R. Adaptive Immune Responses in Hepatitis C Virus Infection. Edited by: Bartenschlager R. In: Hepatitis C virus: from molecular virology to antiviral therapy. Book Series: Current Topics in Microbiology and Immunology, 2013;369: 243–262.

28. Diepolder HM, Gerlach JT, Zachoval R, et al. Immunodominant CD4(+) T-cell epitope within nonstructural protein 3 in acute hepatitis C virus infection. J Virol, 1997;71(8):6011–6019.

29. Cooper S, Erickson AL, Adams EJ, et al. Analysis of a successful immune response against hepatitis C virus. Immunity, 1999;10(4):439–449.

30. Weiner A, Erickson AL, Kansopon J, et al. Persistent hepatitis-C virus-infection in a chimpanzee is associated with emergence of a cytotoxic T-lymphocyte escape variant. Proc Natl Acad Sci USA, 1995;92(7):2755–2759.

31. Chang KM, Rehermann B, McHutchison JG, et al. Immunological significance of cytotoxic T lymphocyte epitope variants in patients chronically infected by the hepatitis C virus. J Clin Invest, 1997;100(9):2376–2385.

32. Kaneko T, Moriyama T, Udaka K, et al. Impaired induction of cytotoxic T lymphocytes by antagonism of a weak agonist borne by a variant hepatitis C virus epitope. Eur J Immunol, 1997;27(7):1782–1787.

33. Irshad M, Khushboo I, Singh S, et al. Hepatitis C Virus (HCV): A Review of Immunological Aspects. Int Rev Immunol, 2008;27(6):497–517.

34. Malta FM, Bruno FR, Carvalho KI, et al. HCV Viremia Drives an Increment of CD86 Expression by Myeloid Dendritic Cells. J Med Virol, 2013;85(11):1919–1924.

35. Jaime-Ramirez A, Mundy-Bosse BL, Kondadasula SriVidya, et al. IL-12 Enhances the Antitumor Actions of Trastuzumab via NK Cell IFN-gamma Production. J Immunol, 2011;186(6):3401–3409.

36. Heufler C, Koch F, Stanzl U, et al. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol, 1996;26(3):659–668.

37. Holder KA, Stapleton SN, Gallant ME, et al. Hepatitis C Virus-Infected Cells Downregulate NKp30 and Inhibit Ex Vivo NK Cell Functions. J Immunol, 2013;191(6):3308–3318.

38. Zhang S, Saha B, Kodys K, et al. IFN-gamma production by human natural killer cells in response to HCV-infected hepatoma cells is dependent on accessory cells. J Hepatol, 2013;59(3):442–449.

39. Aberle JH, Formann E, Steindl-Munda P, et al. Prospective study of viral clearance and CD4(+) T-cell response in acute hepatitis C primary infection and reinfection. J Clin Virol, 2006;36(1):24–31.

40. Fahey S, Dempsey E, Long A. The role of chemokines in acute and chronic hepatitis C infection. Cell Mol Immunol, 2014;11(1):25–40.

41. Takaki A, Wiese M, Maertens G, et al. Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nat Med, 2000;6(5):578–582.

42. Lauer GM, Walker BD. Medical progress: Hepatitis C virus infection. N Engl J Med, 2001;345(1):41–52.

43. Valiante NM, D‘Andrea A, Crotta S, et al. Life, activation and death of intrahepatic lymphocytes in chronic hepatitis C. Immunol Rev, 2000;174:77–89.

44. Sarobe P, Lasarte JJ, Zabaleta A, et al. Hepatitis C virus structural proteins impair dendritic cell maturation and inhibit in vivo induction of cellular immune responses. J Virol, 2003;77(20):10862–10871.

45. Szabo G, Dolganiuc A. Subversion of plasmacytoid and myeloid dendritic cell functions in chronic HCV infection. Conference: Conference of the European-Macrophage-and-Dendritic-Cell-Society Location: Barcelona, SPAIN Date: 2004. Sponsor(s): European Macrophage & Dendrit Cell Soc; Minist Educ & Sci; Autonomous Govt Catalonia; BD Biosci. Immunology, 2005;210(2–4):237–247.

46. Lozach PY, Lortat-Jacob H, de Lavalette AD, et al. DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem, 2003;278(22):20358–20366.

47. Pohlmann S, Zhang J, Baribaud F, et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol, 2003;77(7):4070–4080.

48. Sugimoto K, Ikeda F, Stadanlick J, et al. Suppression of HCV-specific T cells without differential hierarchy demonstrated ex vivo in persistent HCV infection. Hepatology, 2003;38(6):1437–1448.

49. Rushbrook SM, Ward SM, Unitt E, et al. Regulatory T cells suppress in vitro proliferation of virus-specific CD8(+) T cells during persistent hepatitis C virus infection. J Virol, 2005;79(12):7852–7859.

50. Ward SM, Fox BC, Brown PJ, et al. Quantification and localisation of FoxP3+ T lymphocytes and relation to hepatic inflammation during chronic HCV infection. J Hepatol, 2007;47(3):316–324.

51. Thimme R, Lohmann V, Weber F. A target on the move: Innate and adaptive immune escape strategies of hepatitis C virus. Antiviral Res, 2006;69(3):129–141.

52. Boettler T, Spangenberg HC, Neumann-Haefelin C, et al. T cells with a CD4(+)CD25(+) regulatory phenotype suppress in vitro proliferation of virus-specific CD8(+) T cells during chronic hepatitis C virus infection. J Virol, 2005;79(12):7860–7867.

53. Bolacchi F, Sinistro A, Ciaprini C, et al. Increased hepatitis C virus (HCV)-specific CD4(+)CD25 (+) regulatory T lymphocytes and reduced HCV-specific CD4(+) T cell response in HCV-infected patients with normal versus abnormal alanine aminotransferase levels. Clin Exp Immunol, 2006;144(2):188–196.

54. Haseda F, Imagawa A, Murase-Mishiba Y, et al. CD4(+)CD45RA(-)FoxP3(high) activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes. Clin Exp Immunol, 2013;173(2):207–216.

55. Clement S, Pascarella S, Negro F. Hepatitis C Virus Infection: Molecular pathways to steatosis, insulin resistance and oxidative ­stress. Viruses-Basel, 2009;1(2):126–143.

56. Sandernon N, Factor V, Nagy P, et al. Hepatic expression of mature transforming growth-factor-beta-1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA, 1995;92(7):2572–2576.

57. Murawaki Y, Ikuta Y, Nishimura Y, et al. Serum markers for fibrosis and plasma transforming growth factor-beta-1 in patients with hepatocellular carcinoma in comparison with patients with liver cirrhosis. J Gastroenterol Hepatol, 1996;11(5):443–450.

58. Shirai Y, Kawata S, Tamura S, et al. Plasma transforming plasma transforming growth factor-beta-1 in patients with hepatocellular-carcinoma – comparison with chronic liver diseases. Cancer, 1994;73(9):2275–2279.

59. Li S, Vriend L E. M., Nasser IA, et al. Hepatitis C virus-specific T-cell-derived transforming growth factor beta is associated with wlow hepatic fibrogenesis. Hepatology, 2012;56(6):2094–2105.

60. Bengsch B, Seigel B, Ruhl M, et al. Coexpression of PD-1, 2B4, CD160 and KLRG1 on Exhausted HCV-Specific CD8+T Cells Is Linked to Antigen Recognition and T Cell Differentiation. PLoS Pathog, 2010;6(6):art. no. e1000947.

61. Radziewicz H, Ibegbu CC, Fernandez ML, et al. Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J Virol, 2007;81(6):2545–2553.

62. Tacke RS, Hai-Chon Lee, Goh C, et al. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology, 2012;55(2):343–353.

63. Ning G, She L, Lu L, et al. Analysis of monocytic and granulocytic myeloid-derived suppressor cells subsets in patients with hepatitis C virus infection and their clinical significance. Biomed Res Int, 2015;2015:art. no. 385378, 8 pages.

64. Liu Y, She LH, Wang XY, et al. Expansion of myeloid-derived suppressor cells from peripheral blood decreases after 4-week antiviral treatment in patients with chronic hepatitis C. Int J Clin Exp Med, 2014;7(4): 998.

65. Dong J, Wei J, Zhong L, et al. Ribavirin enhances myeloid derived suppressor cell differentiation through CXCL910 downregulation. Immunopharm Immunot, 2014;36(6):412–419.

66. Logvinoff C, Major ME, Oldach D, et al. Neutralizing antibody response during acute and chronic hepatitis C virus infection. Proc Natl Acad Sci USA, 2004;101(27):10149–10154.

67. Wahid A, Dubuisson J. Virus-Neutralizing Antibodies to Hepatitis C Virus. J Viral Hepat, 2013;20(6):369–376.

68. Krekulová L, Řehák V. Virové hepatitidy. Praha: Triton; 2002.

Štítky
Hygiene and epidemiology Medical virology Clinical microbiology
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#