The role of Streptococcus mutans in the oral biofilm
Authors:
K. Legéňová; H. Bujdáková
Authors place of work:
Univerzita Komenského v Bratislave, Prírodovedecká fakulta, Katedra mikrobiológie a virológie, Bratislava, Slovenská republika
Published in the journal:
Epidemiol. Mikrobiol. Imunol. 64, 2015, č. 4, s. 179-187
Category:
Review Article
Summary
Streptococcus mutans is one of the primary colonizers of the oral cavity. Carriage of the appropriate virulence factors - production of glucans, acid resistance, natural competence, and ability to form compact biofilm, confers a certain advantage to S. mutans over other primary colonizers. It is believed to be the main etiological agent of dental caries. Currently, dental caries seems to be a phenomenon related to the metabolic activity of bacteria in the oral biofilm with an impact not only on health but also on socio-economic outcome.
Key words:
Streptococcus mutans – caries – glucans
Zdroje
1. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature, 2007; 18:804–810.
2. Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood. Proc. Natl. Acad. Sci. U.S.A., 2009; 106:3698–3703.
3. Archambaud C, Sismeiro O, Toedling J et al. The intestinal microbiota interferes with the microRNA response upon oral Listeria infection. MBio, 2013; 4:e00707–00713.
4. Marsh PD. Are dental diseases examples of ecological catastrophes-Microbiology, 2003; 149:279–294.
5. De Almeida PDV, Grégio AM, Machado MA, et al. Saliva composition and functions: a comprehensive review. J Contemp Dent Pract, 2008; 9:72–80.
6. Jenkinson HF, Lappin–Scott HM. Biofilms adhere to stay. Trends Microbiol, 2001; 9:9–10.
7. Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends Microbiol, 2005; 13:589–595.
8. Avila M, Ojcius DM, Yilmaz Ö. The oral microbiota: Living with the permanent guest. DNA Cell Biol, 2009; 28(8):405–411.
9. Zijinge V, van Leeuwen M, Degener J, et al. Oral biofilm architecture on natural teeth. PLoS One, 2010; 5(2):e9321.
10. Hall MR, Mc Guillicuddy E, Kaplan LJ. Biofilm: basic principles, pathophysiology, and implications for clinicians. Surg Infect, 2014; 15(1):1–7.
11. Do T, Devine D, Marsh FD. Oral biofilms: molecular analysis, challenges and future prospects in dental diagnostics. Clin Cosmet Investig Dent, 2013; 5:11–19.
12. Jakubovics NS, Yassin SA, Rickard AH. Community interaction of oral streptococci. Adv Appl Microbiol, 2014; 87:43–110.
13. Garnett JA, Matthews S. Interaction on bacterial biofilm development: A structural perspective. Curr Protein Pept Sco, 2012; 13(8):739–755.
14. Gabrani R, Sharma G, Dang S, et al. Interplay among bacterial resistance, biofilm formation and oxidative stress for nosocomial infections. In: Rani V, Yadav UCS. Free Radicals in Human Health and Disease. India: Springier; 2015. s. 369–379.
15. Shahzad M, Millhouse E, Culshaw S, et al. Selected dietary (poly) phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct, 2015; DOI: 10.1039/C4FO01087F.
16. Dewhirst F, Chen T, Izard J, et al. The human oral micobiome. J Bacteriol, 2010; 192(19):5002–5017.
17. Wade WG. The oral microbiome in health and diseases. Pharmacol Res, 2013; 69:137–143.
18. Eren AM, Borisy GG, Huse SM, et al. Oligotyping analysis of the human oral microbiome. PNAS, 2014; 111(28):2975–2884.
19. Marsh P, Martin M. Oral microbiology. Oxford UK: Churchill Livington; 2009.
20. Kolenbrander PE, Andersen RN, Blehert DS, et al. Communication among oral bacteria. Microbiol Mol Biol Rev, 2002; 66(3):486–505.
21. Kolenbrander PE, Palmer R, Periasamy S, et al. Oral multispecies biofilm development and the key role of cell – cell distance. Nat Rev Microbiol, 2010; 8:417–480.
22. Marsh P, Moter A, Devine D. Dental plaque biofilms – communities, conflict and control. Periodontol 2000, 2011; 55(1):16–35.
23. Maddi A, Scannapieco FA. Oral biofilms, oral and periodontal infections, and systemic diseases. Am J Dent, 2013; 26(5):249–254.
24. Aas JA, Paster BJ, Stokes LN, et al. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol, 2005; 43(11):5726–5732.
25. Marsh P. Dental plaque: biological significance of biofilm and community life–style. J Cin Periodontol, 2005; 32(6):7–15.
26. Biradar B, Devi P. Quorum sensing in plaque biofilms: challenges and future prospects. J Contemp Dent Pract, 2011; 12(6):479–485.
27. Kolenbrander PE. Oral microbial communities: biofilms, interactions and genetics system. Annu Rev Microbiol, 2000; 54:413–437.
28. Henke JM, Bassler BL. Bacterial social engagements. Trends Cell Biol, 2004; 14:648–656.
29. Wattson WT, Minogue TD, Val DL et al. Structural basis and specificity of acyl–homoserine lactone signal production in bacterial quorum sensing. Mol Cell, 2002; 9:685–694.
30. Swem LR, Swem DL, O´Loughlin CT, et al. A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenecity. Mol Cell, 2009; 35(2):143–153.
31. Kleerebezem M, Quadri LEN, Kuipers OP, et al. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Biol, 1997; 24(5):895–904.
32. Cvitkovitch DG. Genetic competence and transformation in oral streptococci. Crit Rev Oral Biol Med, 2001; 12(3):217–243.
33. Suntharalingam P, Cvitkovitch DG. Quorum sensing in streptococcal biofilm formation. Trends Microbiol, 2005; 13:3–6.
34. Petersen FC, Scheie AA. Genetic tansformation in Streptococcus mutans requires a peptide secretion-like apparatus. Oral Microbiol Immunol, 2000; 15:329–334.
35. Lee MS, Morrison DA. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol, 1999; 181:5004–5016.
36. Li YH, Tang N, Aspiras MB et al. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol, 2002; 184(10):2699–2708.
37. Cvitkovitch DG, Li YH, Ellen RP. Quorum sensing in biofilm formation in streptococcal infections. J Clin Invest, 2003; 112:1626–1632.
38. Brunelle J, Downer MJ, Downer MC et al. The prevalence of dental caries in Europe 1990–1995. Caries Res, 1996; 30:237–255.
39. König KG. Clinical manifestation and treatment of caries from 1953 to global changes in the 20th century. Caries Res, 2004; 38:168–172.
40. Marthaler TM. Changes in Dental Caries 1953–2003. Caries Res, 2004; 38:173–181.
41. Kite OW, Shaw JH, Sognnaes RF. The prevention of experimental tooth decay by tube-feeding. J Nutr, 1950; 42:89–103.
42. Orland FJ, Blayney JR, Harrison R, et al. Use of the germ-free animal technique in the study of experimental dental caries. J Dent Res, 1954; 33:147–174.
43. Stephan RM. Changes in hydrogen-ion concentration on tooth surfaces and carious lesion. J Am Dent Ass, 1940; 27:718–723.
44. Gustafsson BE, Quensel CE, Lanke LS, et al. The Vipeholm dental caries study. The effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odont Scand, 1954; 11:232–364.
45. Scheinen A, Mäkinen KK, Ylitalo K. Turku sugar studies V. Final report on the effect of sucrose, fructose and xylitol diets on the caries incidence in man. Acta Odont Scand, 1976; 34(4):179–216.
46. Rugg-Gunn AJ. Nutrition and dental health. Oxford: Oxford Medical Publications, 1993.
47. Mandel I. Caries prevention – a continuing need. Int Dent J, 1993; 43:67–70.
48. Rugg-Gunn AJ. Dental caries: Strategies to control this preventable disease. Acta Med Acad, 2013; 42(2):117–130.
49. Nyvad B. The role of oral hygiene. In: Fejerskov O, Kidd EM (ed.) Dental caries. Oxford: Blackwell Munskgaard; 2003; 171–177.
50. Petersen PE, Kandelman D, Arpin S, et al. Global oral health of older people – call for public health action. Community Dent Health, 2010; 27(4):257–267.
51. Murthy AK, Pramila M, Ranganath S. Prevalence of clinical consequences of untreated dental caries and its relation to dental fear among 12–15 year schoolchildren in Bangalore city, India. Eur Arch Paediatr Dent, 2013; doi: 10.1007/s40368-013-0064-1.
52. Bhatia KS, Maguire SA, Chadwick BL, et al. Characteristic of child dental neglect: A systematic review. J Dent, 2014; 42(3):229–239.
53. Figuerido MJ, de Amor RG, Leal SC, et al. Prevalence and severity of clinical consequences of untreated dentin carious lesson in children from deprived area of Brazil. Caries Res, 2011; 45:435–432.
54. Finucane D. Rationale for restoration of carious primary teeth: A review. Eur Arch Paediatr Dent, 2012; 13:281–292.
55. Leal SC, Bronkhorst EM, Fan M, et al. Untreated cavitated dentine lesions: Impact on children´s quality of life. Caries Res, 2012; 46:102–106.
56. Gradella CMF, Bernabé E, Bönecker M, et al. Caries prevalence and severity, and quality of life in Brazilian 2 – to 4 – year old children. Community Dent Oral Epidemiol, 2011; 39:498–504.
57. Benzian H, Monse B, Heinrich-Weltzien R, et al. Untreated severe dental decay: a neglected determinant of low Body Mass Index in 12-year old Filipino children. BMC Public Health, 2011; 11:558–566.
58. Thompson CC, Emmele VE, Fonseca EL, et al. Streptococcal taxonomy based on genome sequence analysis. F 1000 Res, 2013; 2:67.
59. Hardie JM, Whiley RA. The genus Streptococcus. In: Holzapfel WHN, Wood BJB. The Genera of lactic acid bacteria. Springier US; 1995, p. 55–124.
60. Spellerberg B, Brandt C. Streptococcus. In: Murra PR, Baron EJ, Jorgensen JH et al. Manual of clinical microbiology: Volume 1. Washington: AMS Press; 2006, p. 412–429.
61. Täpp J, Thollesson M, Hermann B. Phylogenetic relationship and genotyping of the genus Streptococcus by sequence determination of the RNase P RNA gene, rnpB. Int J Synt Evol Microbiol, 2013; 53:1861–1871.
62. Vos P, Garrity G, Jones D, et al. Bergey´s Manual of Systemic Bacteriology, Volume 3: Firmicutes. London: Spriger, 2009.
63. Amercrombie GF, Camb MB, Scott WM, et al. A Case of infective endocarditis due to Streptococcus mutans. Lancet, 1928; 212(5484):697–699.
64. Baker CN, Thornsberry C. Antimicrobial susceptibility of Streptococcus mutans isolated form patient with endocarditis. Antimicrob Agents Chemother, 1974; 5(3):268–271.
65. Nakao K, Inaba H, Nomura R, et al. Detection of cariogenic Streptococcus mutans in extirpated heart valve and atheromatous plaque specimens. J Clin Microbiol, 2006; 44(9):3313–3317.
66. Nakano K, Nomura R, Matsumoto M, et al. Roles of oral bacteria in cardiovascular diseases – from molecular mechanisms to clinical cases: Cell / surfaces structures of novel serotype K Streptococcus mutans strain. J Pharmacol Sci 2010; 113:120–125.
67. Ehrlich GD, Hu F, Shen K, et al. Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Relat Res, 2005; 437:20–24.
68. Redfield RJ, Findlay WA, Bossé J, et al. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol Biol, 2006; 6:82.
69. Bowen W, Koo H. Biology of Streptococcus mutans – derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilm. Caries Res, 2011; 45:69–86.
70. Gross EL, Beall CJ, Firestone ND et al. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One, 2012; 7:e47722.
71. Kawada–Matsuo M, Mazda Y, Oogai Y, et al. GlmS and NagB regulate amino sugar metabolism in opposing direction and affect of Streptococcus mutans Virulence. PLoS One, 2012; 7(3):e33382.
72. Krzýsciak W, Jurczak A, Kościelniak D et al. The virulence of Streptococcus mutans and the ability to form biofilms. Eur Clin Microbiol Infect Dis, 2013; 33(4):499–515.
73. Gregoire S, Singh AP, Solva BB et al. Role of glucosyltransferase B in interaction of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ Microbiol, 2011; 77(18):6257–6267.
74. Koo H, Xiao J. Klein MI, et al. Exopolysaccharides produced by Streptococcus mutans glucosyltrasferases modulated the establishment of microcolonies within multispecies biofilm. J Bacteriol, 2010; 192:3024–3032.
75. Xiao J, Koo H. Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilm. J Appl Microbiol, 2010; 108:2103–2113.
76. Hanada N, Kuramitsu HK. Isolation and characterization of the gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect Immun, 1988; 56:1999–2005.
77. Fujiwara T, Terao Y, Hoshino T, et al. Molecular analysis of glucosyltransferases genes among strains of Streptococcus mutans. FEMS Microbiol Letter, 1998; 161:331–336.
78. Li Y, Burne RA. Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilm in response to pH and carbohydrate. Microbiol, 2001; 147:2841–2848.
79. Klein MI, Duarte S, Xiao J, et al. Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Eppl Environ Microbiol, 2009; 75:837–841.
80. Chen PM, Chen JY, Chia JS. Differential regulation of Streptococcus mutans gtfBCD genes in response to copper ions. Arch Microbiol, 2006; 18:127–135.
81. van Hijum SA, Kralj S, Ozimek LK, et al. Structure – function relationship of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev, 2006; 70:157–176.
82. Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res, 2013; 92(12):1065–1073.
83. Yoshida A, Ansai T, Takehara T, et al. LuxS – based signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol, 2005; 71:2372–2380.
84. Browngardt ChM, Wen ZT, Burne RA. RegM is required for optimal fructosyltransferase and glucosyltransferase gene expression in Streptococcus mutans. FEMS Microbiol Lett, 2004; 240(1):75–79.
85. Frees D, Savijoki K, Varmanen P et al. Clp ATPases and Clp proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol, 2007; 63:1285–1295.
86. Gottesman S. Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol, 2003; 19:565–587.
87. Kajfasz JK, Martinez AR, Rivera-Ramos R, et al. Role of Clp proteins in expression of virulence properties of Streptococcus mutans. J Bacteriol, 2009; 191:2060–2068.
88. Lemos JA, Burne RA. Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans. J Bacteriol, 2002; 184:6357–6366.
89. Frees D, Chastanet A, Quazi S, et al. Clp ATPase are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol, 2004; 54:1445–1462.
90. Bergin D, Reeves EP, Renwick J, et al. Superoxide production in Galleria mallonella hemocytes: identification of protein homologues to the NADPH oxidase complex of human neutrophils. Infect Immun, 2005; 73:4161–4170.
91. Deng TM, ten Cate JM, Crielaard W. The adaptive response of Streptococcus mutans towards oral care products: involvement of the ClpP serine protease. Eur J Oral Sci, 2007; 115:363–370.
92. Biswas S, Biswas I. Regulation of the glucosyltransferase (gtfBC) operon by covR in Streptococcus mutans. J Bacteriol, 2006; 188:988–998.
93. Sato Y, Yamamoto Y, Kizahu H. Construction of region–specific partial duplication mutants (merodiploid mutants) to identify regulatory gene for the glucan–binding protein C gene in vivo in Streptococcus mutans. FEMS Microbiol Lett, 2000; 186:187–191.
94. Senadheera MD, Guggenheim B, Spatafora GA et al. A vicRK signal transduction system in Streptococcus mutans affects gtfBCD, gtfB and ftf expression, biofilm formation, and genetic competence development. J Bacteriol, 2005; 187:4064–4076.
95. Duque C, Stipp RN, Wang B et al. Downregulation of DbpB, a component of vicRK regulon, affect biofilm formation and cell surface characteristic of Streptococcus mutans. Infect Immun, 2011; 79:786–796.
96. Banas JA, Vickermann MM. Glucan–binding proteins of the oral streptococcus. Crit Rev Oral Biol Med, 2003; 14:89–99.
97. Idone V, Brendtro S, Gillespie R, et al. Effect of an orphan response regulator on Streptococcus mutans sucrose–dependent adherence and cariogenesis. Infect Immun, 2003; 71:4351–4360.
98. Senadheera MD, Cordova M, Ayala EA, et al. Regulation of bacteriocin production and cell death by vicRK signaling system in Streptococcus mutans. J Bacteriol, 2012; 194:1307–1316.
99. Paes Leme AF, Koo H, Bellato CM, et al. The role of sucrose in cariogenic dental biofilm formation – new insight. J Dent Res, 2006; 8:878–887.
100. Pessan JP, Silva SM, Lauris JR, et al. Fluoride uptake by plaque from water and from dentifrice. J Dent Res, 2008; 87:461–465.
101. Xiao J, Klein MI, Falsetta ML, et al. The exopolysaccharide matrix modulates in the interaction between D architecture and virulence of mixed species oral biofilm. PloS ONE, 2012; 8(4):e1002623.
102. Klein MI, Xiao J, Lu B, et al. Streptococcus mutans protein synthesis during mixed–species biofilm development by high–throughput quantitative proteomics. PloS ONE, 2012; 7:e45795.
103. Guo LM Hu W, He X, et al. Investigating acid production by Streptococcus mutans with surface–displayed pH–sensitive green fluorescent protein. PloS One, 2013; 8:e57182.
104. Ciardi JE, Bowen JH, Rölla G. The effect of antibacterial compounds on glucosyltransferases activity from Streptococcus mutans. Arch Oral Biol, 1978; 23:301–305.
105. Osawa K, Miyazaki K, Shimura S, et al. Identification of cariostatic substance in the cacao bean husk: their anti–glucosyltransferase and antibacterial activities. J Dent Res, 2001; 80:2000–2004.
106. Steinberg D, Feldman M, Ofek I, et al. Effect of a high–molecular-weight component of cranberry on constituents of dental biofilm. J Antimicrob Chemother, 2004; 54:86–89.
107. Hanning C, Spitymuller B, Al-Ahmad A, et al. Effect of Cistus–tea on bacterial colonization and enzyme activities of the in situ pellicles. J Dent, 2008; 36:540–554.
108. Wunder D, Bowen WB. Action of agents on glucosyltransferases from Streptococcus mutans in solution and adsorbed to experimental pellicle. Arch Oral Biol, 1999; 44:203–214.
109. Koo H, Vacca-Smith AM, Bowen WH, et al. Effect of Apis mellifera propolis on the activities of streptococcal glucosyltransferases in solution and adsorbed on saliva–coated hydroxyapatite. Caries Res, 2000; 34:418–426.
110. Koo H, Duarte S, Murata SM, et al. Influence of cranberry proanthocyanidins on formation of biofilm by Streptococcus mutans in saliva-coated hydroxyapatite surfaces and on dental caries development in vivo. Caries Res, 2010; 44:116–126.
111. Taubman MA, Nash DA. The scientific and public health imperative for vaccine against dental caries. Nat Rev Immunol, 2006; 6:555–562.
112. Culshaw C, Larosa K, Tolani H, et al. Immunogenic and protective potential of mutant streptococcal glucosyltransferase peptide construct selected by major histocompatibility complex class II allele binding. Infect Immun, 2007; 75:915–923.
113. Kim MA, Lee MJ, Joeng KH, et al. A monoclonal antibody specific to glucosyltransferase B of Streptococcus mutans GS-5 and its glucosyltransferase inhibitory efficiency. Hybridoma (Larchmt), 2012; 31(6):430–435.
114. Zhang S. Dental caries and vaccination strategy against major cariogenic pathogen, Streptococcus mutans. Curr Phar Biotechnol, 2014; 14(11):960–966.
115. Krüger C, Pearson SK, Kodama Y, et al. The effect of egg–derived antibodies to glucosyltransferases on dental carries in rats. Caries Res, 2004; 38:9–14.
116. DiPersio JR, Mattingly SJ, Higgins ML, et al. A quantitative ultrastructural and chemical investigation of the accumulation of idiophilic polysaccharide in two cariogenic strains of Streptococcus mutans. Microbios, 1978; 21:109–126.
117. Busuioc M, Mackiewicz K, Buttaro BA, et al. Role of intracellular polysaccharide in persistence of Streptococcus mutans. J Bacteriol, 2009; 191(23):7315–7322.
118. Kiel JA, Boels JM, Beldman G, et al. Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol, 1994; 11:203–218.
119. Takata H, Takaha H, Okada S, et al. Characterization of a gene cluster for glycogen biosynthesis and a heterotetrameric ADP-glucose pyrophosphorylase from Bacillus stearothermophilus. J Bacteriol, 1997; 179:4689–4698.
120. Freedman ML, Coykendall AL. Variation in internal polysaccharide synthesis among Streptococcus mutans strains. Infect. Immun, 1975; 12:475–479.
121. Gibbons RJ, Socransky SS. Intercellular polysaccharide storage by organisms in dental plaque. Its relation to dental caries ad microbial ecology of the oral cavity. Arch Oral Biol, 1962; 7:73–79.
122. Spatafora GA, Sheets M, June R, et al. Regulated expression of the Streptococcus mutans dlt genes correlates with intracellular polysaccharide accumulation. J Bacteriol, 1999; 181:2363–2372.
123. Walker GJ. Metabolism of the reserve polysaccharide of Streptococcus mitis.Some properties of pullulanase. Biochem J, 1968; 108:33–40.
124. Plant AR, Clemens RM, Morgan HW, et al. Active-site- and substrate-specificity of Thermoanaerobium Tok6-B1 pullulanase. Biochem J, 1987; 246:537–541.
125. Hishino T, Fujiwara T, Kawabata S. Evolution of cariogenic character in Streptococcus mutans: Horizontal transmission of glycosyl hydrolase family 70 genes. Sci Rep, 2012; 2:518–524.
Štítky
Hygiene and epidemiology Medical virology Clinical microbiologyČlánok vyšiel v časopise
Epidemiology, Microbiology, Immunology
2015 Číslo 4
Najčítanejšie v tomto čísle
- Benign acute childhood myositis as a complication of influenza B and its differential diagnosis
- Human hantavirus diseases – still neglected zoonoses?
- Toxic shock syndrome
- The role of Streptococcus mutans in the oral biofilm