Some aspects of the immune system in the pathogenesis of Alzehimer’s disease
Authors:
Z. Chmátalová; A. Skoumalová
Authors place of work:
Ústav lékařské chemie a klinické biochemie 2. LF UK a FN v Motole, Praha
Published in the journal:
Epidemiol. Mikrobiol. Imunol. 65, 2016, č. 2, s. 79-84
Category:
Review Article
Summary
Alzheimer’s disease is a severe neurodegenerative disorder and the most common cause of dementia in the population above 60 years of age. Beta-amyloid accumulation and neurofibrillary tangles formation in the brain precedes the development of Alzheimer's dementia by many years. As beta-amyloid accumulation inhibition failed as a treatment option, the theories on the Alzheimer’s disease pathophysiology are being revised. In this context, research targets the role of inflammation as the possible trigger mechanism and accompanying process of neurodegeneration. This article summarizes some knowledge of the immune function of brain cells and its potential relation to Alzheimer’s disease progression in the light of the immune reaction hypothesis.
KEYWORDS:
Alzheimer’s disease – immune response – inflammation – brain cells
Zdroje
1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR et al. Inflammation and Alzheimer´s disease. Neurobiol Aging, 2000;21:383–421.
2. Aloisi F. Imune function of microgli. Glia, 2001;36:165–179.
3. Andersen KJ. Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurocsi, 2004;5:18–25.
4. Baerenwaldt A, Biburger M, Nimmerjahn F. Mechanisms of action of intravenous immunoglobulins. Expert Rev Clin Immunol, 2010;6(3):425–434.
5. Baumann N, Pham-Dinh D. Biology of Oligodendrocyte and Myelin in the mammalian nervous systém. Physiol. Rew, 2001;81:871–927.
6. Blalock EM, Geddes JW, Chen KC et al. Incipient Alzheimer’s disease: microarray corelation analyses reveal major transcriptional and tumor suppressor response. Proc Natl Acad Sci USA, 2004;101:2173–2178.
7. Bohlson SS, Fraser DA, Tenner AJ. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions, Molecular Immunology, 2007; 44:33–43.
8. Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Research, 1992; 587(2): 250–256.
9. Bonifati DM, Kishore U. Role of complement in neurodegeneration and neuroinflammation. Molecular Immunology, 2007; 44(5):999–1010.
10. Breitner JC, Baker LD, Montine TJ, Meinert CL, Lyketsos CG, Ashe KH, et al. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimer’s & dementia. Alzheim Dement J Alzheimer’s Assoc., 2011;7(4):402–411.
11. Butterfield DA, Reed TT, Perluigi M, et al. Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res, 2007;1148:243–48.
12. Cagnin A, Brooks DJ, Kennedy AM et al. In-vivo measurement of activated microglia in dementi. Lancet, 2001;358:461–467.
13. Carrero I, Gonzalo MR, Martin B, Sanz-Anquela JM, Arevalo-Serrano J, Gonzalo-Ruiz A. Oligomers of β-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1β, tumour necrosis factor-α, and a nuclear factor κ-B mechanism in the rat brain. Experimental Neurology, 2012;236:215–227.
14. Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the imunoreactivity of the brain: a new review. Immunol Today, 1992;13:507–512.
15. Dodel RC, Du Y, Depboylu C, Hampel H, Frolich L, Haag A, et al. Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry, 2004;75(10):1472–1474.
16. Dong Y, Benveniste EN. Immune function of astrocytes. Glia, 2001; 36: 180–190.
17. Edison P, Archer HA, Gerhard A, et al. Microglia, amyloid, and cognition in Alzheimer's disease: An 11C (R)PK11195-PET and 11C PIB-PET study. Neurobiol Dis, 2008;32:412–419.
18. El Khouri J, Hickman SE, Thomas CA, et al. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature, 1996;382:716–719.
19. Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA, 2003;100:4162–4167.
20. Flügel A, Schwaiger FW, Neumann H, et al. Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol, 2000;10:353–364.
21. Friedman FJ. Cytokines regulate expression of the Type 1 interleukin-1 receptor in rat hippocampal neurons and glia. Exp Neurol, 2001;168:23–31.
22. Heneka MT, Wiesinger H, Dumitrescu-Ozimek L, Riederer P, Feinstein DL, Klockgether T. Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J Neuropathol Exp Neurol, 2001;60(9):906–916.
23. Heneka NT, Carson M, El Khoury J, et al. Neuroinflammation in Alzheimer´s disease. Lancet Neurol, 2015;14:388–405.
24. Hosokawa M, Klegeris A, Maquire J, et al. Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia, 2003;42:417–423.
25. Chao CC, Hu S, Sheng WH, et al. Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia, 1996;16:276–284.
26. Choi SH, Aid S, Kim HW, Jackson SH, Bosetti F. Inhibition of NADPH oxidase promotes alternative and anti-infl ammatory microglial activation during neuroinfl ammation. J Neurochem, 2012;120:292–301.
27. Jack CR Jr., Jagust WJ, Knopman DS. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol, 2010;9:119–128.
28. Jantaratnotai N, Ryu JK, Kim SU, et al. Amyloid β peptide-induced corpus callosum damage and glial activation in vivo. Neuroreport, 2003;14:1429–1433.
29. Juurlink BH. Response of glial cells to ischemia: Roles of reactive oxygen species and glutathione. Neurosci Biobehav Rev, 1997;21:151–166.
30. Krstic D, Knuesel I. The airbag problem-a potential culprit for bench-to-bedside translational efforts: relevance for Alzheimer's disease. Acta Neuropathol Commun, 2013;1:62.
31. Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm, 2010;117:949–960.
32. Lemere CA, Masliah E. Can Alzheimer disease be prevented by amyloid-β immunotherapy? Nat Rev Neurol, 2010;6:108–119.
33. Li Y, Liu L., Barger SW, Griffin WST. Interleukin- 1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-mapk pathway. J Neurosci, 2003; 23(5):1605–1611.
34. Loeffler DA. Significance of Complement Activation in Alzheimer's Disease. US Neurology, 2008;4(2):52–55.
35. Lue LF, Rydel L, Brigham EF, et al. Inflammatory repertoire of Alzheimer´s disease and nondemented elderly microglia in vitro. Glia, 2001;35:72–79.
36. Magga J, Puli L, Pihlaja R, Kanninen K, Neulamaa S, Malm T, et al. Human intravenous immunoglobulin provides protection against Aβ toxicity by multiple mechanisms in a mouse model of Alzheimer's disease. J Neuroinflammation, 2010;7:90.
37. Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA. Complement C3 deficiency leads to accelerated amyloid β plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J Neurosci, 2008; 28(25):6333–6341.
38. Majumdar A, Chung H, Dolios G, et al. Degradation of fibrillar forms of Alzheimer´s amyloid β-peptide by macrophages. Neurolbiol Aging, 2008;29:707–715.
39. McGeer PL, McGeer EG. Local neuroinflamation and the progression of Alzheimer´s disease. Journal of NeuroVirology, 2002; 8:529–538.
40. Meraz-Ríos MA, Toral-Ríos D, Franco-Bocanegra D, Villeda-Hernandéz J, Campos-Pena V. Inflammatory process in Alzeimer´s disease. Front Integr Neurosci, 2013;7:1–15.
41. Mitew S, Kirkcaldie MT, Halliday GM, et al. Focal demyelination in Alzheimer´s disease and transgenic mouse models. Acta Neuropathol, 2010;119:567–577.
42. Moore AH, O´Banion MK. Neuroinflammation and anti-inflammatory therapy for Alzheimer´s disease. Adv Drug Delivery Rev, 2002;54:1627–1656.
43. Mott RT, Ait-Ghezala G, Town T, et al. Neuronal expression of CD22: Novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia, 2004;46:369–379.
44. Mrak RE. Microglia in Alzheimer Brain: A Neuropathological Perspective. Int J Alzheimers Dis, 2012;2012:165021. doi:10.1155/2012/165021.
45. Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinfl ammation, 2005; 2:9.
46. Pimplikar SW. Neuroinflammation in Alzheimer´s Disease: from Pathogenesis to a Therapeutic Target. J Clin Immunol, 2014;34(1):64–69.
47. Price J, Kemper C, Atkinson J, Morris J. Activation of complement cascade, and lack of regulatory proteins, on plaques and tangles in aging and early Alzheimer´s disease. Neurobiol Aging, 2002;23:223.
48. Renauld EA, Spengler RN. Tumor necrosis factor expressed by primary hipocampal neurons SH-SY5Y cells is regulated by alpha(2)-adrenergic receptor activation. J Neurosci Res, 2002;67:264–274.
49. Rodríguez JJ, Olabarria M, Chvatal A, et al. Astroglia in dementia and Alzheimer´s disease. Cell Death Digger, 2009;16:378–385.
50. Roth AD, Ramirez G, Alarcon R, et al. Oligodendrocytes damage in Alzheimer´s disease: β amyloid toxicyty and inflammation. Biol Res, 2005;38:381–387.
51. Rubio-Perez JM, Morillas-Ruiz JM. A review: Inflammatory Process in Alzheimer´smDisease, Role of Cytokines. The Scientific World Journal, 2012;2012:756357. doi:10.1100/2012/756357.
52. Sheffield LG, Marquis JG Berman NEJ. Regional distribution of cortical microglia parallels that of neurofibrillary tangles in alzheimer’s disease. Neurosci Lett, 2000;285(3):165–168.
53. Shen Y, Li R, McGeer EG, et al. Neuronal expression of mRNAs for complement proteins of the classical pathway in Alzheimer disease. Brain res 1997; 769: 391–395.
54. Shen Y, Lue L, Yang L, Roher A, Kuo Y, Strohmeyer R, et al. Complement activation by neurofibrillary tangles in Alzheimer´s disease. Neurosci Lett, 2001;305:165–168.
55. Sheng JG, Mrak RE, Griffin WST. Glial-neuronal interactions in Alzheimer disease: progressive association of il-1α+ microglia and s100β+ astrocytes with neurofibrillary tangle stages. J Neuropath Exp Neurol, 1997;56(3):285–290.
56. Smits HA, Rijsmus A, Van Loon JH, et al. Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. J Neuroimmunol, 2002;127:160–168.
57. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol, 2010;119:7–35.
58. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci, 2009;32:638–647.
59. Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile infl ammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol, 2010;11:155–161.
60. Streit WJ, Walter SA, Pennel NA. Reactive microgliosis. Prog Neurobiol, 1999;57:563–581.
61. Strohmeyer R, Shen Y, Rogers J. Detection of complement alternative pathway mRNA and proteins in the Alzheimer´s disease brain. Brain Res Mol Brain Res, 2000;81:7–18.
62. Sudduth TL, Greenstein A, Wilcock DM. Intracranial injection of Gammagard, a human IVIg, modulates the inflammatory response of the brain and lowers Aβ in APP/PS1 mice along a different time course than anti-Aβ antibodies. J Neurosci, 2013;33(23):9684–9692.
63. Thal DR. The role of astrocytes in amyloid β-protein toxicity and clearance. Exp Neurol, 2012;236:1–5.
64. Tuppo EE, Arias HR. The role of inflamation in Alzheimer´s disease. Int J Biochem Cell Biol, 2005;13:289–305.
65. Ullian EM, Sapperstein SK, Christopherson KS, et al. Control of synapse number by glia. Science, 2001;291:657–661.
66. Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol, 2011;48:1592–1603.
67. Vehmas AK, Kawas CH, Stewart WF, et al. Immune reactive cells in senile plaque and cognitive decline in Alzheimer´s disease. Neurobiol Aging, 2003;24:321–331.
68. Vellas B, Carrillo MC, Sampaio C, Brashear HR, Siemers E, Hampel H, et al. Designing drug trials for Alzheimer’s disease: what we have learned from the release of the phase III antibody trials: a report from the EU/US/CTAD Task Force. Alzheim Dement J Alzheimer’s Assoc, 2013;9(4):438–444.
69. Walker DG, Dalsing-Hernandez JE, Campbell NA, et al. Decreased expression of CD200 and CD200 receptor in Alzheimer´s disease: A potential mechanism leading to chronic inflammation. Exp Neurol, 2009;215:5–19.
70. Weldon DT, Rogers SD, Ghilardi JR, et al. Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of select population of neurons in the rat CNS in vivo. J Neurosci, 1998;18:2161–2173.
71. Woodruff TM, Ager RR, Tenner AJ, Noakes PG, Taylor SM. The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med, 2010;12:179–192.
72. Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med, 2003;9:453–457.
73. Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease – A bref review of the basic science and clinical literature. Cold Spring Harb Perspect Med, 2012;2:1–23.
74. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med, 2006;12:1005–1015.
75. Yang LB, Meri S, Rogers J, et al. Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer´s disease. J Neurosci, 2000;20:7505–7509.
76. Yasojima K, McGeer EG, McGeer PL. Complement regulators C1 inhibitor and CD59 do not significantly inhibit complement activation in Alzheimer disease. Brain Res, 1999;833: 297–301.
77. Yasojima K, Schwab C, McGeer EG, et al. Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer´s disease. Brain Res, 2000;887:80–89.
78. Yermakova A, O’Banion MK. Cyclooxygenases in the central nervous system: implications for treatment of neurological disorders. Curr Pharm Des, 2000; 6(17):1755–1776.
79. Yin KJ, Cirrito JR, Yan P, et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci, 2006; 26:10939–10948.
Štítky
Hygiene and epidemiology Medical virology Clinical microbiologyČlánok vyšiel v časopise
Epidemiology, Microbiology, Immunology
2016 Číslo 2
Najčítanejšie v tomto čísle
- A report of 10 cases of familial Creutzfeld-Jakob disease
- Novel approaches to control the rise in pertussis cases
-
The occurrence of Ixodes ricinus ticks and important tick-borne pathogens in areas with high tick-borne encephalitis prevalence in different altitudinal levels of the Czech Republic
Part I. Ixodes ricinus ticks and tick-borne encephalitis virus - The effect of oxygen on endotoxin production in bacteria of the Bacteroides fragilis group isolated from patients with colorectal carcinoma