#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mykobakteriózy – nejčastější původci


Authors: V. Ulmann 1;  R. Kozel 2;  I. Tudík 3;  I. Pavlík 4
Authors‘ workplace: Centrum klinických laboratoří, Oddělení bakteriologie a mykologie, Zdravotní ústav se sídlem v Ostravě, Ostrava 1;  Pneumologie a ftizeologie (plicní), Městská nemocnice Ostrava, p. o., Ostrava 2;  Oddělení pneumologie a ftizeologie, Sanatorium Jablunkov, a. s., Jablunkov 3;  Ústav teritoriálních studií, Fakulta regionálního rozvoje a mezinárodních studií, Mendelova univerzita v Brně, Brno 4
Published in: Epidemiol. Mikrobiol. Imunol. 72, 2023, č. 3, s. 151-163
Category: Review Article

Overview

The annual number of diagnosed diseases caused by non-tuberculous mycobacteria in predisposed individuals remains constant in the Czech Republic. Their clinical characteristics vary depending on the properties of the causative species and its presence and quantity in the immediate environment of the patient. The most common clinically relevant species are Mycobacterium aviumM. kansasii, and M. xenopi. The most important source of M. avium is peat and products derived from it. M. avium may colonise warm water systems, posing a high risk of exposure to users (jacuzzi users in particular). M. kansasii is still present in waters of areas affected by industrial and mining activities. Its recently isolated genetic variants are mostly of no clinical significance but may be present as contaminants in medical preparations. M. xenopi permanently colonises most warm water systems, and its practical ubiquity makes difficult the interpretation of ambiguous findings on imaging. The antibiotic treatment, which may not always be successful, should be initiated after a comprehensive assessment of the patient’s condition, imaging data, and disease progression. Similarly, the results of laboratory tests may not always be authoritative in decision making.

Keywords:

treatment – mycobacteriosis – M. avium – M. kansasii – M. xenopi – sources of infection – clinical manifestations


Sources
  1. LPSN. List of Prokaryotic Names with Standing in Nomenclature. Available online: https://lpsn.dsmz.de/ (17.7.2022).
  2. Kazda J. The Ecology of Mycobacteria; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2000; 72 s.
  3. Kazda J, Pavlik I, Falkinham J, et al. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. Dordrecht: Springer, 2009. 520 s.
  4. Horváthová A, Kazda J, Bartl J, et al. Výskyt podmienečne patogénnych mykobaktérií v prostredí a ich vplyv na živý organizmus. Vet Med-Czech, 1997;42(7):191–212.
  5. Gramegna A, Lombardi A, Lorè NI, et al. Innate and adaptive lymphocytes in non-tuberculous mycobacteria lung disease: A review. Front Immunol, 2022;13:927049.
  6. Trovato A, Baldan R, Costa D, et al. Molecular typing of Mycobacterium abscessus isolated from cystic fibrosis patients. Int J Mycobacteriol, 2017;6(2):138–141.
  7. Davidson RM, Nick SE, Kammlade SM, et al. Genomic analysis of a hospital-associated outbreak of Mycobacterium abscessus: Implications on transmission. J Clin Microbiol, 2022;60(1):e0154721.
  8. Norton GJ, Williams M, Falkinham JO 3rd, Honda JR. Physical measures to reduce exposure to tap water-associated nontuberculous mycobacteria. Front Public Health, 2020;8:190.
  9. Feng Z, Bai X, Wang T, et al. Differential responses by human macrophages to infection with Mycobacterium tuberculosis and non-tuberculous mycobacteria. Front Microbiol, 2020;11:116.
  10. Noma K, Mizoguchi Y, Tsumura M, Okada S. Mendelian susceptibility to mycobacterial diseases: state of the art. Clin Microbiol Infect. 2022;28(11):1429–1434. Epub 2022; Erratum in: Clin Microbiol Infect. 2022; PMID: 35283318.
  11. Warheit-Niemi HI, Edwards SJ, SenGupta S, et al. Fibrotic lung disease inhibits immune responses to staphylococcal pneumonia via impaired neutrophil and macrophage function. JCI Insight, 2022;7(4):e152690.
  12. Chien JY, Lai CC, Sheng WH, et al. Pulmonary infection and colonization with nontuberculous mycobacteria, Taiwan, 2000– 2012. Emerg Infect Dis, 2014;20(8):1382–1385.
  13. Bonaiti G, Pesci A, Marruchella A, et al. Nontuberculous mycobacteria in noncystic fibrosis bronchiectasis. Biomed Res Int, 2015:197950.
  14. Haque AK. The pathology and pathophysiology of mycobacterial infections. J Thorac Imaging, 1990;5(2):8–16.
  15. Zdravotnická statistika České republiky: Tuberkulóza a respirační nemoci. Praha: Ústav zdravotnických informací a statistiky; 2001–2021.
  16. Bartos M, Hlozek P, Svastova P, et al. Identification of members of Mycobacterium avium species by Accu-Probes, serotyping, and single IS900, IS901, IS1245 and IS901-flanking region PCR with internal standards. J Microbiol Methods, 2006;64:333–345.
  17. Mijs W, de Hass P, Rossau R, et al. Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp. avium for bird-type isolates and ‘M. avium subsp. hominissuis’ for the human/porcine type of M. avium. Int J Syst Evol Microbiol, 2002;52:1505–1518.
  18. Pavlik I, Svastova P, Bartl J, et al. Relationship between IS901 in the Mycobacterium avium complex strains isolated from birds, animals, humans, and the environment and virulence for poultry. Clin Diagn Lab Immunol, 2000;7(2):212–217.
  19. Kaevska M, Slana I, Kralik P, et al. Examination of Mycobacterium avium subsp. avium distribution in naturally infected hens by culture and triplex quantitative real time PCR. Vet Med-Czech, 2010;55(7):325–330.
  20. Agrawal G, Aitken J, Hamblin H, et al. Putting Crohn’s on the MAP: Five common questions on the contribution of Mycobacterium avium subspecies paratuberculosis to the pathophysiology of Crohn’s Disease. Dig Dis Sci, 2021;66(2):348–358.
  21. Matern WM, Jenquin RL, Bader JS, Karakousis PC. Identifying the essential genes of Mycobacterium avium subsp. hominissuis with Tn-Seq using a rank-based filter procedure. Sci Rep, 2020;10(1):1095.
  22. Kaevska M, Slana I, Kralik P, et al. “Mycobacterium avium subsp. hominissuis” in neck lymph nodes of children and their environment examined by culture and triplex quantitative real-time PCR. J Clin Microbiol, 2011;49(1):167–172.
  23. Thegerström J, Jönsson B, Brudin L, et al. Mycobacterium avium subsp. avium and subsp. hominissuis give different cytokine responses after in vitro stimulation of human blood mononuclear cells. PLoS One, 2012;7(4).
  24. Ulmann V, Kracalikova A, Dziedzinska R. Mycobacteria in water used for personal hygiene in heavy industry and collieries: A potential risk for employees. Int J Environ Res Public Health, 2015;12(3):2870–2877.
  25. Waletzko B, Lin PL, Lopez SMC. “Hot Tub Lung” With M. avium complex in an immunocompetent adolescent. Pediatr Infect Dis J, 2023;42(3):e84-e87.
  26. Ulmann V, Modrá H, Babak V, et al. Recovery of mycobacteria from heavily contaminated environmental matrices. Microorganisms, 2021;9(10):2178.
  27. Pavlik I, Ulmann V, Modra H, et al. Nontuberculous mycobacteria prevalence in bats’ guano from caves and attics of buildings studied by culture and qPCR examinations. Microorganisms, 2021;9(11):2236.
  28. Janda A, Mejstříková E, Salzer U, et al. Deficit transkripčního faktoru GATA-2: nová imunodeficience se širokým fenotypovým spektrem. První pacienti diagnostikovaní v České republice a přehled literatury. Čes-slov pediatr, 2013;68(2):101–112.
  29. Zhou Y, Mu W, Zhang J, et al. Global prevalence of non-tuberculous mycobacteria in adults with non-cystic fibrosis bronchiectasis 2006–2021: A systematic review and meta-analysis. BMJ Open, 2022;12(8):e055672.
  30. Rojony R, Martin M, Campeau A, et al. Quantitative analysis of Mycobacterium avium subsp. hominissuis proteome in response to antibiotics and during exposure to different environmental conditions. Clin Proteomics, 2019;16:39.
  31. Corrigendum to: Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin Infect Dis, 2020;71(11):3023. Erratum for: Clin Infect Dis, 2020;71(4):e1-e36.
  32. Kim HJ, Lee JS, Kwak N, et al. Role of ethambutol and rifampicin in the treatment of Mycobacterium avium complex pulmonary disease. BMC Pulm Med, 2019;19(1).
  33. Kwon YS, Koh WJ, Daley CL. Treatment of Mycobacterium avium complex pulmonary disease. Tuberc Respir Dis (Seoul), 2019;82(1):15–26.
  34. Picardeau M, Prod’Hom G, Raskine L, et al. Genotypic characterization of five subspecies of Mycobacterium kansasii. J Clin Microbiol, 1997;35(1):25–32.
  35. Murugaiyan J, Lewin A, Kamal E, et al. MALDI spectra database for rapid discrimination and subtyping of Mycobacterium kansasii. Front Microbiol, 2018;9:587.
  36. Jagielski T, Borówka P, Bakuła Z, et al. Genomic insights into the Mycobacterium kansasii complex: An update. Front Microbiol, 2020;10:2918.
  37. Johnston JC, Chiang L, Elwood K. Mycobacterium kansasii. Microbiol Spectr, 2017;5(1).
  38. Fujita Y, Naka T, McNeil MR, et al. Intact molecular characterization of cord factor (trehalose 6,6’-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology (Reading), 2005;151(Pt 10):3403–3416.
  39. Pavlik I, Ulmann V, Hubelova D, et al. Nontuberculous mycobacteria as sapronoses: A review. Microorganisms, 2022;10:1345.
  40. Ali J. A multidisciplinary approach to the management of nontuberculous mycobacterial lung disease: A clinical perspective. Expert Rev Respir Med, 2021;15(5):663–673.
  41. Ricketts WM, O’Shaughnessy TC, van Ingen J. Human-to-human transmission of Mycobacterium kansasii or victims of a shared source? Eur Respir J, 2014;44(4):1085–1087.
  42. Kim JH, Seo KW, Shin Y, et al. Risk factors for developing Mycobacterium kansasii lung disease: A case-control study in Korea. Medicine (Baltimore), 2019;98(5):e14281.
  43. Maliwan N, Zvetina JR. Clinical features and follow up of 302 patients with Mycobacterium kansasii pulmonary infection: a 50 year experience. Postgrad Med J, 2005;81(958):530–533.
  44. Tudik I, Ulmann V. Retrospective analysis of patients with pulmonary Mycobacterium kansasii infection. Stud Pneumol Phthiseol, 2013;73(6):214–221.
  45. Saleeb P, Olivier KN. Pulmonary nontuberculous mycobacterial disease: New insights into risk factors for susceptibility, epidemiology, and approaches to management in immunocompetent and immunocompromised patients. Curr Infect Dis Rep, 2010;12(3):198–203.
  46. Schwabacher H. A strain of Mycobacterium isolated from skin lesions of a cold-blooded animal, Xenopus laevis, and its relation to atypical acid-fast bacilli occurring in man. J Hyg (Lond), 1959;57:57–67.
  47. Modra H, Bartos M, Hribova P, et al. Detection of mycobacteria in the environment of the Moravian Karst (Bull Rock Cave and the relevant water catchment area): the impact of water sediment, earthworm castings and bat guano. Vet Med-Czech, 2017;62:153–168.
  48. Sniadack DH, Ostroff SM, Karlix MA, et al. A nosocomial pseudo-outbreak of Mycobacterium xenopi due to a contaminated potable water supply: Lessons in prevention. Infect Control Hosp Epidemiol, 1993;14(11):636–641.
  49. Modra H, Ulmann V, Caha J, et al. Socio-economic and environmental factors related to spatial differences in human non-tuberculous mycobacterial diseases in the Czech Republic. Int J Environ Res Public Health, 2019;16(20):3969.
  50. Vijay S, Mukkayyan N, Ajitkumar P. Highly deviated asymmetric division in very low proportion of mycobacterial mid-log phase cells. Open Microbiol J, 2014;8:40–50.
  51. Mogami R, Goldenberg T, de Marca PG, Mello FC, Lopes AJ. Pulmonary infection caused by Mycobacterium kansasii: Findings on computed tomography of the chest. Radiol Bras, 2016;49(4):209213.
  52. Damaraju D, Jamieson F, Chedore P, Marras TK. Isolation of non-tuberculous mycobacteria among patients with pulmonary tuberculosis in Ontario, Canada. Int J Tuberc Lung Dis, 2013;17(5):676–681.
  53. Fogla S, Pansare VM, Camero LG, et al. Cavitary lung lesion suspicious for malignancy reveals Mycobacterium xenopi. Respir Med Case Rep, 2018;23:83–85.
  54. van Ingen J, Boeree MJ, de Lange WC, et al. Mycobacterium xenopi clinical relevance and determinants, the Netherlands. Emerg Infect Dis, 2008;14(3):385–389.
  55. Bennett SN, Peterson DE, Johnson DR, et al. Bronchoscopy-associated Mycobacterium xenopi pseudoinfections. Am J Respir Crit Care Med, 1994;150(1):245–250.
  56. Andréjak C, Almeida DV, Tyagi S, et al. Improving existing tools for Mycobacterium xenopi treatment: assessment of drug combinations and characterization of mouse models of infection and chemotherapy. J Antimicrob Chemother, 2013;68(3):659–665.
  57. Ulmann V, Modrá H, Bartoš M, et al. Epidemiologie vybraných zástupců komplexu Mycobacterium tuberculosis v České republice v letech 2000–2016. Epidemiol Mikrobiol Imunol, 2018;67(4):184–190.
  58. Svobodová J. Případy tuberkulózy v ČR v letech 2009–2012 vyvolané neobvyklými druhy komplexu Mycobacterium tuberculosis. Zprávy Centra epidemiologie a mikrobiologie, 2013;22(1):12–14.
  59. Bártů V, Müllerová M, Kalina P, et al. Tuberkulóza vyvolaná Mycobacteriem bovis. Stud Pneumol Phthiseol, 2009;69(1):5–7.
  60. Kaustová J, Olsovský Z, Kubín M, et al. Endemic occurrence of Mycobacterium kansasii in water-supply systems. J Hyg Epidemiol Microbiol Immunol, 1981;25(1):24–30.
  61. Chobot S, Malis J, Sebakova H, et al. Endemic incidence of infections caused by Mycobacterium kansasii in the Karvina district in 1968–1995 (analysis of epidemiological data-review). Cent Eur J Public Health, 1997;5(4):164–173.
  62. Klanicova B, Seda J, Slana I, et al. The tracing of mycobacteria in drinking water supply systems by culture, conventional, and real time PCRs. Curr Microbiol, 2013;67(6):725–731.
  63. Krizova K, Matlova L, Horvathova A, et al. Mycobacteria in the environment of pig farms in the Czech Republic between 2003 and 2007. Vet Med-Czech, 2010;55(2):55–69.
  64. Matlova L, Dvorska L, Bartl J, et al. Mycobacteria isolated from the environment of pig farms in the Czech Republic during the years 1996 to 2002. Vet Med-Czech, 2003;48(12):343–357.
  65. Beran V, Matlova L, Dvorska L, et al. Distribution of mycobacteria in clinically healthy ornamental fish and their aquarium environment. J Fish Dis, 2006;29(7):383–393.
  66. Slany M, Makovcova J, Jezek P, et al. Relative prevalence of Mycobacterium marinum in fish collected from aquaria and natural freshwaters in central Europe. J Fish Dis, 2014;37(6):527–533.
  67. Klanicová B, Slaný M, Slaná I. Analysis of sediments and plants from the system of five fishponds in the Czech Republic using culture and PCR methods. Sci Total Environ, 2014;472:851–854.
Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#