#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Molecular spectroscopy of blood plasma –  towards the diagnostics of pancreatic cancer?


Authors: B. Bunganič 1;  L. Šťovíčková 2;  M. Tatarkovič 2;  L. Kocourková 2;  Š. Suchánek 1;  P. Frič 1;  V. Setnička 2;  M. Zavoral 1
Authors‘ workplace: Interní klinika 1. LF UK a ÚVN –  VFN v Praze 1;  Ústav analytické chemie, VŠCHT v Praze 2
Published in: Gastroent Hepatol 2015; 69(6): 518-524
Category: Gastrointestinal Oncology: Original Article
doi: https://doi.org/10.14735/amgh2015518

Overview

Pancreatic cancer is a malignancy with a poor prognosis and is estimated to become one of the leading causes of death from cancer by the end of the decade. Only early diagnosis may alter this adverse trend. To select a group of patients at risk of pancreatic cancer, an effective biomarker is required. The main objective of the pilot study is to identify a new specific spectral biomarker of pancreatic cancer using unpolarized methods of molecular spectroscopy (Raman spectroscopy) in combination with chiroptical methods that are inherently sensitive to structural changes of chiral molecules (electronic circular dichroism and Raman optical activity).

Methods:
Blood samples were collected from 10 patients with pancreatic cancer and 23 healthy controls. Subsequently, blood plasma was separated and preserved. The obtained samples were analysed using a combination of chiroptical and vibrational spectroscopies.

Results:
In a pilot study with a limited number of samples, the sensitivity of the established statistical model reached 85–90% after cross-validation. The results are better in comparison with so far the only clinically available biomarker CA-19-9.

Conclusion:
The obtained results are suitable for further testing in a larger group of patients. The spectroscopic examination of high-risk patients may form part of a screening process.

Key words:
pancreatic cancer – blood plasma – biomarkers – spectroscopy – circular dichroism – Raman optical activity – chirality

The authors declare they have no potential conflicts of interest concern­ing drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE „uniform requirements“ for bio­­­­­medical papers.

 Submitted:
5. 11. 2015

Accepted:
30. 11. 2015


Sources

1. Trends in SEER incidence and U.S. mor-tality us­ing the Joinpoint Regres­sion Program, 1975– 2011 with up to five Joinpoints,1992– 2011 with up to three Join­points,both sexes by race/ ethnicity. [online]. Avail­-able from: http:/ / seer.cancer.gov/ csr/ 1975_2011/ results_merged/ sect_22_pancreas.pdf#search=pancreatic.

2. Katz MH, Hwang R, Flem­ing JB et al. Tumor-node-metastasis stag­ing of pancre­atic adenocarcinoma. CA Cancer J Clin 2008; 58(2): 111– 125. doi: 10.3322/ CA.2007.0012.

3. Gobbi PG, Bergonzi M, Comel­li M et al. The prognostic role of time to dia­gnosis and present­ing symp­toms in patients with pan­creatic cancer. Cancer Epidemiol 2013; 37(2): 186– 190. doi: 10.1016/ j.canep.2012.12.002.

4. Dušek L, Mužík J, Kubásek M et al. Epidemiologie zhoubných nádorů v České republice. [online]. Dostupné z: www.svod.cz.

5. Gangi S, Fletcher JG, Nathan MA et al. Time interval between abnormalities seen on CT and the clinical dia­gnosis of pan­creatic cancer: retrospective review of CT scans obtained before dia­gnosis. AJR Am J Roentgenol 2004; 182(4): 897– 903.

6. Bunganič B, Frič P, Zavoral M. Pan­creatic adenocarcinoma –  early symp­toms and screening. Cas Lek Cesk 2014; 153(6): 267– 270.

7. Sah RP, Nagpal SJ, Mukhopadhyay D et al. New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol 2013; 10(7): 423– 433. doi: 10.1038/ nrgastro.2013.49.

8. Aggarwal G, Kamada P, Chari ST. Prevalence of diabetes mel­litus in pancreatic cancer compared to com­mon cancers. Pancreas 2013; 42(2): 198– 201. doi: 10.1097/ MPA.0b013e3182592c96.

9. Poruk KE, Firpo MA, Adler DG et al. Screen­ing for pancreatic cancer: why, how, and who? An­nal Surg 2013; 257(1): 17– 26. doi: 10.1097/ SLA.0b013e31825f­fbfb.

10. Ducreux M, Cuhna AS, Caramel­la C. Cancer of the pancreas: ESMO clinical practice guidelines for dia­gnosis, treatment and fol­low-up. Ann Oncol 2015. 26 (Suppl 5): v56– v68. doi: 10.1093/ an­nonc/ mdv295.

11. Wang G, Lipert RJ, Jain M et al. Detection of the potential pancreatic cancer marker MUC4 in serum us­ing surface-enhanced Raman scattering. Anal Chem 2011; 83(7): 2554– 2561. doi: 10.1021/ ac102829b.

12. Kaur S, Kumar S, Momi N et al. Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol 2013; 10(10): 607– 620. doi: 10.1038/ nrgastro.2013.120.

13. Horn A, Chakraborty S, Dey P et al. Im­munocytochemistry for MUC4 and MUC16 is a useful adjunct in the dia­gnosis of pancreatic adenocarcinoma on fine-needle aspiration cytology. Arch Pathol Lab Med 2013; 137(4): 546– 551. doi: 10.5858/ arpa.2011-0229-OA.

14. Car­rara S, Cangi MG, Arcidiacono PG et al. Mucin expres­sion pattern in pan­creatic diseases: findings from EUS-guided fine-needle aspiration bio­psies. Am J Gastroenterol 2011; 106(7): 1359– 1363. doi: 10.1038/ ajg.2011.22.

15. Zhu F, Isaacs NW, Hecht L et al. Raman optical activity: a tool for protein structure analysis. Structure 2005; 13(10): 1409– 1419.

16. Bar­ron LD, Zhu F, Hecht L et al. Raman optical activity: an incisive probe of molecular chirality and bio­molecular structure. J Mol Struct 2007; 834– 836(1): 7– 16.

17. Berova N, Nakanishi K, Polavarapu PL et al. Comprehensive Chiroptical Spectroscopy. 2nd ed. New Jersey: John Wiley & Sons Inc 2012.

18. Schultz NA, Dehlendorff C, Jensen BV et al. MicroRNA bio­markers in whole blood for detection of pancreatic cancer. JAMA 2014; 311(4): 392– 404. doi: 10.1001/ jama.2013.284664.

19. Tatarkovič M, Synytsya A, Šťovíčková Let al. The minimiz­ing of fluorescence back­ground in Raman optical activity and Ra-man spectra of human blood plasma. Anal Bioanal Chem 2015; 407(5): 1335– 1342. doi: 10.1007/ s00216-014-8358-7.

20. Synytsya A, Judexová M, Hrubý T et al. Analysis of human blood plasma and hen egg white by chiroptical spectroscopic methods (ECD, VCD, ROA). Anal Bioanal Chem 2013; 405(16): 5441– 5453. doi: 10.1007/ s00216-013-6946-6.

21. Seuf­ferlein T, Bachet JB, Van Cutsem E et al. Pancreatic adenocarcinoma: ESMO-ESDO clinical practice guidelines for dia­g­nosis, treatment and fol­low-up. Ann Oncol 2012; 23 (Suppl 7): vii33–vii 40.

22. Tempero MA, Arnoletti JP, Behrman S et al. Pancreatic adenocarcinoma. Journal Natl Compr Canc Netw 2010; 8(9): 972– 1017.

23. Withnall R, Chowdhry BZ, Silver J et al. Raman spectra of carotenoids in natural products. Spectrochim Acta, Part A 2003; 59(10): 2207– 2212.

24. Parker SF, Tavender SM, Dixon NM et al. Raman spectrum of beta-carotene us­ing laser lines from green (514.5 nm) to near-infrared (1064 nm): implications for the characterization of conjugated polyenes. Appl Spectrosc 1999; 53(1): 86– 91.

25. Kinalwa MN, Blanch EW, Doig AJ. Accurate determination of protein secondary structure content from Raman and Raman optical activity spectra. Anal Chem 2010; 82(15): 6347– 6349. doi: 10.1021/ ac101334h.

26. Whitmore L, Wal­lace BA. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 2008; 89(5): 392– 400.

27. Hirst JD, Colel­la, K, Gilbert AT. Electronic circular dichroism of proteins from first -principles calculations. J Phys Chem B 2003; 107: 11813– 11819.

28. Molina V, Visa L, Conill C et al. CA 19-9 in pancreatic cancer: retrospective evaluation of patients with suspicion of pancreatic cancer. Tumour Biol 2012; 33(3): 799– 807. doi: 10.1007/ s13277-011-0297-8.

29. Kim JE, Lee KT, Lee JK et al. Clinical usefulness of carbohydrate antigen 19-9 as a screen­ing test for pancreatic cancer in an asymp­tomatic population. J Gastroenterol Hepatol 2004; 19(2): 182– 186.

30. Bal­lehanin­na UK, Chamberlain RS. The clinical utility of serum CA 19-9 in the dia­gnosis, prognosis and management of pancreatic adenocarcinoma: an evidence-based appraisal. J Gastrointest Oncol 2012; 3(2): 105– 119. doi: 10.3978/ j.is­sn.2078-6891.2011.021.

31. Itzkowitz SH, Kim YS. New carbohydrate tumor markers. Gastroenterology 1986; 90(2): 491– 494.

32. Duf­fy MJ, Sturgeon C, Lamerz R et al. Tumor markers in pancreatic cancer: a European Group on Tumor Markers (EGTM) status report. Ann Oncol 2010; 21(3): 441– 447. doi: 10.1093/ an­nonc/ mdp332.

33. Baine M. Pancreatic cancer bio­markers. In: Encyclopedia of Cancer. Heidelberg: Springer 2009: 790– 805.

34. Gao L, He SB, Li DC. Ef­fects of miR-16 plus CA 19-9 detections on pancreatic cancer dia­gnostic performance. Clin Lab 2014; 60(1): 73– 77.

35. Rhim AD, Mirek ET, Aiel­lo NM et al. EMT and dis­semination precede pancreatic tumor formation. Cell 2012; 148(1– 2): 349– 361. doi: 10.1016/ j.cel­l.2011.11.025.

36. Rhim AD, Thege FI, Santana SM et al. Detection of circulat­ing pancreas epithelial cel­ls in patients with pancreatic cystic lesions. Gastroenterology 2014; 146(3): 647– 651. doi: 10.1053/ j.gastro.2013.12.007.

37. Apte MV, Wilson JS, Lugea A et al. A star­r­ing role for stel­late cel­ls in the pan­creatic cancer microenvironment. Gastroenterology 2013; 144(6): 1210– 1219.

38. He XY, Yuan YZ. Advances in pancre­atic cancer research: mov­ing towards early detection. World J Gastroenterol 2014; 20(32): 11241– 11248. doi: 10.3748/ wjg.v20.i32.11241.

Labels
Paediatric gastroenterology Gastroenterology and hepatology Surgery

Article was published in

Gastroenterology and Hepatology

Issue 6

2015 Issue 6
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#