#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Changes of bone metabolism in diabetics


Authors: Vladimír Palička 1,2;  Jana Lesná 1,2;  Ladislava Pavlíková 1,2
Authors‘ workplace: Osteologické centrum FN Hradec Králové, vedoucí prof. MUDr. Vladimír Palička, CSc. 1;  Ústav klinické biochemie a diagnostiky LF UK a FN Hradec Králové, přednostka MUDr. Ladislava Pavlíková 2
Published in: Vnitř Lék 2014; 60(9): 742-745
Category:

Overview

The effect of impaired regulation of the glucose metabolism on the bone tissue metabolism is many-sided and very complicated. In most cases we observe an increased risk of fracture in people with diabetes. The reasons causing this condition are varied. Its main cause in diabetic patients is typically not the decrease in bone mineral density, it is rather deterioration of bone tissue and its structure. An important role of insulin and insulin resistance is beyond dispute, with numerous other factors at work, such as increased glycation of proteins, including increased glycation of collagen in bones, change in sclerostin production and levels, intervention in the pluripotent stem cells differentiation and reversal of their differentiation toward adipocytes and many more. Some antidiabetics, mainly oral, may also significantly contribute to the increased risk of fracture. Given the increasing incidence of both diseases, diabetes and osteoporosis, it will be also necessary to examine in greater detail their mutual relations and effects.

Key words:
antidiabetics – bone metabolism – diabetes mellitus – insulin resistance – osteoporosis


Sources

1. Ashraf AP, Huisingh C, Alavarez JA et al. Insulin Resistance Indices Are Inversely Associated With Vitamin D Binding Protein Concentrations. J Clin Endocrinol Metab 2014; 99(1): 178–183.

2. Bunck MC, Poelma M, Eckhoff EM et al. Efects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients. J Diabetes 2012; 4(2): 181–185.

3. Duque G. Bone and fat connection in aging bone. Curr Opin Rheumatol 2008; 20(4): 429–434.

4. Farr JN, Drake MT, Amin S et al. In Vivo Assessment of Bone Quality in Postmenopausal Women With Type 2 Diabetes. J Bone Miner Res 2014; 29(4): 787–795.

5. Ferron M, Wei J, Yoshizawa T et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010; 142(2): 296–308.

6. Hothersall EJ, Livingstone SJ, Looker HC et al. Contemporary Risk of Hip Fracture in Type 1 and Type 2 Diabetes: A National Registry Study From Scotland. J Bone Miner Res 2014; 29(5): 1054–1060.

7. Jepsen KJ, Schlecht SH. Biomechanical Mechanisms: Resolving the Apparent Conundrum of Why Individuals With Type 2 Diabetes Show Increased Fracture Incidence Despite Having Normal BMD. J Bone Miner Res 2014; 29(4): 784–786.

8. Mabilleau G, Mieczkowska A, Chappard D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: A meta-analysis of randomized clinical trials. J Diabetes 2014; 6(3): 260–266.

9. Meier C, Kraenzlin ME, Bodmer M et al. Use of thiazolidinediones and fracture risk. Arch Intern Med 2008; 168(8): 820–825.

10. Nuttall ME, Shah F, Singh V et al. Adipocytes and the Regulation of Bone Remodeling: A Balancing Act. Calcif Tissue Int 2014; 94(1): 78–87.

11. Palička V. Léky ovlivňující kostní metabolizmus diabetiků. Vnitř Lék 2009; 55(4): 368–370.

12. Raška I jr. Diabetes mellitus 2. typu a kost. Osteol Bull 2013; 18(4): 133–136.

13. Register TC, Hruska KA, Divers J et al. Sclerostin Is Positively Associated With Bone Mineral Density in Men and Women and Negatively Associated With Carotic Calcified Atherosclerotic Plaque in Men From the African American-Diabetes Heart Study. J Clin Endocrinol Metab 2014; 99(1): 315–321.

14. Shin D, Kim S, Kim KH et al. Association Between Insulin Resistance and Bone Mass in Men. J Clin Endocrinol Metab 2014; 99(3): 988–995.

15. Srikanthan P, Crandall CJ, Miller-Martinez D et al. Insulin Resistance and Bone Strength: Findings From the Study of Midlife in the United States. J Bone Miner Res 2014; 29(4): 796–803.

16. Wan Y, Chong LW, Evans RM PPAR-γ regulates osteoclastogenesis in mice. Nat Med 2007; 13(12): 1496–1503.

17. Yamamoto M, Yamauchi M, Sugimoto T. Elevated Sclerostin Levels Are Associated With Vertebral Fractures in Patients With Type 2 Diabetes Mellitus. J Clin Endocrinol Metab 2013; 98(10): 4030–4037.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 9

2014 Issue 9
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#