#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Osteoporosis in men: underappreciated and undertreated


Authors: Vít Zikán
Authors place of work: 3. interní klinika 1. lékařské fakulty UK a VFN v Praze
Published in the journal: Vnitř Lék 2021; 67(5): 271-283
Category: Main Topic

Summary

Osteoporotic fractures of the vertebrae and the proximal end of the femur dramatically impair quality of life and increase morbidity and mortality. Although up to 40% of all osteoporotic fractures occur in men, physicians tend to underestimate the osteoporosis in men, and it remains underdiagnosed and undertreated. Though, there is no evidence that current approved osteoporosis medications work any less well in men than in women, insufficient awareness of the risk of fractures, fear of side effects of drugs and other barriers have made management challenging in men at risk for fracture. Our review provides updates on pathophysiology and current options for diagnosis and treatment of male osteoporosis.

Keywords:

management – Pathogenesis – fractures – male osteoporosis


Zdroje

1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285: 785–795.

2. Bliuc D, Nguyen ND, Milch VE et al. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009; 301: 513–521.

3. Hernlund E, Svedbom A, Ivergård M et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013; 8(1): 136.

4. Hopkins RB, Pullenayegum E, Goeree R et al. Estimation of the lifetime risk of hip fracture for women and men in Canada.Osteoporos Int. 2012; 23(3): 921–927.

5. Kaufman JM. Management of osteoporosis in older men. Aging Clin Exp Res. 2021; 33(6): 1439–1452.

6. Haentjens P, Magaziner J, Colón-Emeric CS et al. Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med. 2010; 152: 380–390.

7. Binkley N, Adler R, Bilezikian JP. Osteoporosis diagnosis in men: the T-score controversy revisited. Curr Osteoporos Rep. 2014; 12(4): 403–409.

8. Riggs BL, Melton III LJ, Robb RA et al. A population-based study of age and sex differences in bone volumetric density, size, geometry and structure at different skeletal sites. J Bone Miner Res. 2004; 19: 1945–1954.

9. Seeman E, Bianchi G, Khosla S et al. Bone fragility in men – where are we? Osteoporos Int. 2006; 17: 1577–1583.

10. Ostertag A, Collet C, Chappard C et al. A case–control study of fractures in men with Idiopathic osteoporosis: fractures are associated with older age and low cortical bone density. Bone. 2013; 52: 48–55.

11. Van Pottelbergh I, Goemaere S, Zmierczak H et al. Deficient acquisition of bone during maturation underlies idiopathic osteoporosis in men: evidence from a three generation family study. J Bone Miner Res. 2003; 18: 303–311.

12. van Meurs JB, Trikalinos TA, Ralston SH et al. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA. 2008; 299: 1277–1290.

13. Mohamad NV, Soelaiman IN, Chin KY. A concise review of testosterone and bone health. Clin Interv Aging. 2016; 11: 1317–1324.

14. Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012; 23(11): 576–581.

15. Mellstrom D, Vandenput L, Mallmim H et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res. 2008; 23: 1552–1560.

16. Finkelstein JS, Lee H, Leder B et al. Gonadal steroid-dependent effects on bone turnover and bone mineral density in men. J Clin Invest. 2016; 126(3): 1114.

17. Verschueren S, Gielen E, O‘Neill TW et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int. 2013; 24: 87–98.

18. Mittan D, Lee S, Miller E, et al. Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J Clin Endocrinol Metab. 2002; 87(8): 3656.

19. Shahinian VB, Kuo YF, Freeman JL et al. Risk of fracture after androgen deprivation for prostate cancer. Goodwin JS SO N Engl J Med. 2005; 352(2): 154.

20. Watts NB, Leslie WD, Foldes AJ, Miller PD. 2013 International Society for Clinical Densitometry Position Development Conference: Task Force on Normative Databases. J Clin Densitom. 2013; 16(4): 472–481.

21. Kanis JA, Oden A, Johansson H et al. FRAX((R)) and its applications to clinical practice. Bone. 2009; 44: 734–743.

22. Stepan JJ, Vaculik J, Pavelka K et al. Hip fracture incidence from 1981 to 2009 in the Czech Republic as a basis of the country-specific FRAX model. Calcif Tissue Int. 2012; 90(5): 365–372.

23. Dent E, Morley JE, Cruz-Jentoft AJ et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J Nutr Health Aging. 2018; 22(10): 1148–1161.

24. Harvey NC, Biver E, Kaufman JM et al. The role of calcium supplementation in healthy musculoskeletal ageing: An expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundation for Osteoporosis (IOF). Osteoporos Int. 2017; 28: 447–462.

25. Rizzoli R. Dairy products, yogurts, and bone health. Am J Clin Nutr 2014; 99(5 Suppl): 1256s–1262s.

26. Rizzoli R, Stevenson JC, Bauer JM et al. ESCEO Task Force. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas. 2014; 79: 122–132.

27. Rizzoli R. Nutritional influence on bone: role of gut microbiota. Aging ClinExp Res. 2019; 31(6): 743–751.

28. Giustina A, Adler RA, Binkley N et al. Consensus statement from 2nd international conference on controversies in vitamin D. Rev Endocr Metab Disord 2020; 21: 89–116.

29. Rochira V, Antonio L & Vanderschueren D. EAA clinical guideline on management of bone health in the andrological outpatient clinic. Andrology 2018; 6: 272–285.

30. Kaufman JM, Reginster JY, Boonen S et al. Treatment of osteoporosis in men. Bone. 2013; 53: 134–144.

31. Sawka AM, Papaioannou A, Adachi JD et al. Does alendronate reduce the risk of fracture in men? A meta-analysis incorporating prior knowledge of anti-fracture efficacy in women. BMC Musculoskelet Disord. 2005; 6: 39.

32. Boonen S, Lorenc RS, Wenderoth D et al. Evidence for safety and efficacy of risedronate in men with osteoporosis over 4 years of treatment: results from the 2-year, open- -label, extension study of a 2-year, randomized, double-blind, placebo-controlled study. Bone. 2012; 51: 383–388.

33. Ringe JD, Farahmand P, Faber H, Dorst A. Sustained efficacy of risedronate in men with primary and secondary osteoporosis: results of a 2-year study. Rheumatol Int. 2009; 29: 311–315.

34. Sato Y, Iwamoto J, Kanoko T et al. Risedronate sodium therapy for prevention of hip fracture in men 65 years or older after stroke. Arch Int Med. 2005; 165: 743–1748.

35. Lyles KW, Colón-Emeric CS, Magaziner JS, HORIZON Recurrent Fracture Trial, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007; 357: 1799–1809.

36. Boonen S, Orwoll E, Magaziner J, HORIZON Recurrent Fracture Trial, et al. Once-yearly zoledronic acid in older men compared with women with recent hip fracture. J Am Geriatr Soc. 2011; 59: 2084–2090.

37. Boonen S, Reginster JY, Kaufman JM et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med. 2012; 367: 1714–1723.

38. Khan AA, Morrison A, Kendler DL et al. Case-Based Review of Osteonecrosis of the Jaw (ONJ) and Application of the International Recommendations for Management From the International Task Force on ONJ. J Clin Densitom. 2017; 20(1): 8–24.

39. Genant HK, Libanati C, Engelke K et al. Improvements in hip trabecular, subcortical, and cortical density and mass in postmenopausal women with osteoporosis treated with denosumab. Bone. 2013; 56: 482–488.

40. Smith MR, Egerdie B, Hernández Toriz N. Denosumab HALT Prostate Cancer Study Group, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009; 361: 745–755.

41. Orwoll E, Teglbjærg CS, Langdahl BL et al. A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab. 2012; 97: 3161–3169.

42. Langdahl BL, Teglbjærg CS, Ho PR et al. A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J Clin Endocrinol Metab. 2015; 100: 1335–1342.

43. Tourdi E, Langdahl B, Cohen-Solal M et al. Discontinuation of denosumab therapy for osteoporosis: a systematic review and position statement by ECTS. Bone 2017; 105: 11–17.

44. Orwoll ES, Scheele WH, Paul S et al. The effect of teriparatide (human parathyroid hormone (1–34)) therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003; 18: 9–17.

45. Saag KG, Zanchetta JR, Devogelaer JP et al. Effects of teriparatide vs alendronate for treating glucocorticoid-induced osteoporosis: 36-month results of a randomized, double- -blind, controlled trial. Arthritis Rheum. 2009; 60: 3346–3355.

46. Díez-Pérez A, Marin F, Eriksen EF et al. Effects of teriparatide on hip and upper limb fractures in patients with osteoporosis: A systematic review and meta-analysis. Bone. 2019; 120: 1–8.

Štítky
Diabetology Endocrinology Internal medicine
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#