#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The role of smoking in the epigenetic modification of phenotype: the latest knowledge about smoking-induced pathways


Authors: Drahoslava Hrubá;  Veronika Šikolová;  Šárka Kunzová;  Kateřina Kašíková
Authors place of work: Ústav preventivního lékařství, Lékařská fakulta, Masarykova univerzita
Published in the journal: Čas. Lék. čes. 2013; 152: 31-35
Category: Review Article

Summary

Many environmental factors, including chemicals in cigarette smoke, have deleterious effects on human health. Epidemiological studies have repeatedly confirmed that prenatal exposure to maternal smoking is associated not only with complications of pregnancy, foetal growth retardation and disturbed development, but also with an increased risk of serious diseases manifested during childhood and adulthood. The possible pathways of aberrant foetal programming are the interactions of genes and environmental factors through epigenetic mechanisms. Although these scientific problems are just beginning to be understood, some models of altered epigenetic regulations were described: DNA methylation, non-coding RNA(ncRNA)-mediated gene regulation and histone modification. Our contemporaneous knowledge has confirmed that both active smoking and in utero exposure to cigarette smoke can induce changes in all studied epigenetic pathways, and even can be transmitted to future generations through the male germ line.

Keywords:
genes – smoking – epigenetic pathways – foetal programming


Zdroje

1. Bird A. Perception of epigeneticts. Nature 2007; 447: 396–398.

2. Wutz A. Xist function: bringing chromatin and stem cells. Trends Genet 2007; 23: 457–464.

3. Reamon-Buettner M, Mutschler V, Borlak J. The next innovation cycle in toxicogenomics environmental epigenetics. Mut Res 2008; 659: 158–165.

4. Maccani MA, Knopik VS. Cigarette smoke exposure-associated alternations to non-coding RNA. Front Gene 2012, April; 3: 53 doi.0.3389/gene.2012.00053.

5. Jirtle RL, Skinner MK. Environmental epigenomics and disease sussceptibility. Nat Rev Genet 2007; 8: 253–262.

6. Maccani MA, Marsit CJ. Epigenetics in the placenta. Am J Reprod Immunol 2009; 62: 78–89.

7. Barker DJ. The developmental origins of adult disease. J Amer Coll Nutr 2004; 23: 588S–595S.

8. Hofhuis W, Jongste JC, Merkus PI. Adverse health effects of prenatal and postnatal tobacco smoke exposure on children. Arch Dis Child 2003; 88: 1086–1090.

9. Landau LI. Tobacco smoke exposure and tracking of lung function into adult life. Paediatr Respir Rev 2008; 9: 39–43

10. Marczylo EL, Amoako AA, Konje JC, Gant TW, Marczylo TH. Smoking induces differential miRNS expression in human spermatozoa. Epigenetics 2012. 7 May. ttp://dx.doi.org/10.4161/epi.7.5.19794

11. Doherty SP, Grabowski J, Hoffman C, Ng SR, Zelikoff JT. Early life insult from cigarette smoke may be predictive of chronic diseases later in life. Biomarkers 2009; 14(Suppl 1): 97–101.

12. Kiechl-Kohlendorfer U, Raiser B, Pupp Peglow U, Reiter G., Griesmaier E, Trawoger B. Smoking in pregnancy: a risk factor for adverse neurodevelopmental outcome in preterm infants. Acta Pediatr 2010; 99: 1016–1019.

13. Miller T, Rauh VA, Glied SAM, Hattis D, Rundle A, Andrews H. The economic impact of early life environmental tobacco smoke exposure: early intervention for developemental delay. Environ. Health Perspect 2006; 114: 1585–1588.

14. Orhon FS, Ulokol B, Kahya D, Cengiz B, Baskan S, Tezcan S. The influence of maternal smoking on maternal and newborn oxidant and antioxidant status. Eur J Pediatr 2009; 168: 975–981.

15. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994; 266: 1821–1828.

16. Lambers DS, Clark KE. The maternal and fetal physiologic effects of nicotine. Semin Perinatol 1996; 20: 115–126

17. Andersen KV, Hermann N. Placenta flow reduction in pregnant smokers. Acta Obstet Gynecol Scand 1984; 63: 707–709.

18. Jauniaux E, Burton GJ. The effect of smoking in pregnancy on early placental morphology. Obstet Gynecol 1992; 79: 645–648.

19. Genbacev O, Bass KE, Joslin RJ, Fisher SJ. Maternal smoking inhibits early human cytotrophoblast differentiation. Reprod Toxicol 1995; 9: 245–255.

20. Hrubá D. Riziko kouření v těhotenství se stále podceňuje. Tolerovat kouření v těhotenství je neodborné a neetické. Prakt Gyn 2011; 15: 34–39.

21. Skinner MK. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 2011; 6: 838–842.

22. Suter MA, Abramovici A, Aagard-Tillery KM. Genetic and epigenetic influences associated with intrauterine growth restriction due to in utero tobacco exposure. Pediatr Endocrinol Rev 2010; 8: 94–102.

23. Hales BF, Grenier L, Lalancette C, Robaire B. Epigenetic programming: from gametes to blastocyst. Birth Defects Res. A Clin Mol Teratol 2011; 91: 652–665.

24. Crane-Godreau MA, Maccani MA, Eszterhas SK, Warnwer SL, Jukosky JA, Fiering S. Exposure to cigarette smoke disrupts CCL20-mediated antimicrobial activity in respiratory epithelial cells. Open Immunol J 2009; 2: 86–93.

25. Daxinger L Whitelaw E. Transgenerational epigenetic inheritance: more questions than answers. Genome Res 2010; 20: 1623–1628.

26. Suter MA, Aagard-Tillery KM. What changes in DNA methylation také place in individuals exposed to maternal smoking in utero? Epigenomics 2012; 4: 115–118.

27. Ehrlich M. DNA methylation in cancer: too much but also too little. Oncogene 2002; 21: 5400–5413.

28. Liu L, Wylie RC, Andrews LG, Tollefsbol TO. Ageing, cancer and nutrition: the DNA methylation connection. Mech Ageing Dev 2003; 124: 989–998.

29. Michels KB, Harris HR, Barault L. Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PloS ONE 2011; 6, e25254.

30. Pavanello S, Bollati V, Pesatori AC, Kapka L, Bolognesi C, Berta-zzi PA. Global and gene-specific promoter methylation changes are related to anti-BaP DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals. Int J Cancer 2009; 125: 1692–1697.

31. Jensen TJ, Novak P, Winek SM, Gandolfi AJ, Futscher BW. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol 2009; 241: 21–29.

32. Huang D, Zhang Y, Qi Y, Chen C, Ji W. Global DNA hypomethylation rathet than reactive oxygen species (ROS), a potential facilitator of cadmium.stimulated K562 cell proliferation. Toxicol. Lett 2008; 179: 43–47.

33. Breton CV, Byun HM, Wenten M. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med 2009; 180: 462–467.

34. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerationalactions of environmental factors in disease etiology. Trends Endocrinol. Metab., 2010, 21: 214–222.

35. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. A reference database for long noncoding RNAs. Nucleid Acids Res 2011; 39: D146–151.

36. Du T, Zamore PD. Beginning to understand microRNA function. Cell Research 2007; 17: 661–663.

37. Kukreja EC, Yin C, Salloum FN. MicroRNAs: New players in cardiac injury and protection. Mol Pharmacol 2011; 80: 558–564.

38. Banerjee A, Luettich K. MicroRNAs as potential biomarkers of smoking-related diseases. Biomarkers Med 2012; 6: 671–684.

39. Xi S, Yang M, Tao Y, Xu H, Shan J, Inchauste SW, Zhang M, Merce-des L, Hong JA, Ran M, Schrump DS. Cigarette smoke induces C/EBP-meta-mediated activation of miR-31 in normal human respiratory epithelis and lung cancer cells. PloS ONE 2010; 5, ei 13764; doi:10.137/journal.pone.0013764

40. Schembri F, Sridhar S, Perdomo C, Gustafson AM, Zhang XH, Bowers J, Vaziri C, Ott K, Sensinger K, Collins JJ, Brody JS, Getts R, Lenburg ME, Spirs A. MicroRNAs as modulators of smoking–induced gene expression changes in human airway epithelium. Proc Natl Acad Sci USA 2009; 106: 2319–2324.

41. Maccani MA, Marsit CJ. Exposure and fetal growth-associated miRNA alternations in the human placenta. Clin Epigenetics, 2011; 2: 401–404.

42. Cuzin F, Rassoulzadegan M. Non-Mendelian epigenetic heredity: gametic RNAs as epigenetic regulators and transgenerational signals. Essays Biochem 2010; 48: 101–106.

43. Dechanet C, Anahory T, Mathieu Daude JC, Quantin X, Reyftmann L,Hamamah S. Effects of cigarette smoking on reproduction. Hum Reprod Update 2011; 17: 76–95.

44. Walker DM, Gore AC. Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol 2011; 7: 197–207.

45. Thomson T, Lin H. The biogenesis and function of PIWI proteins andpiRNAs: progress and prospect. Annu Rev Cell Dev Biol 2009; 25: 355–376.

46. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol 2011; 12: 246–258.

47. Silva JM, Perez DS, Pritchett JR, Halling ML, Tang H, Smith DI. Identification of long stress–induced non–coding transcrips that have altered expression in cancer. Genomics 2010; 95: 355–362.

48. Lennartsson A, Ekwall K. Histone modification patterns and epigenetic codes. Biochem Biophys Acta 2009; 1790: 863–868.

Štítky
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental Hygienist
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#