miRNA as a new marker of diabetes mellitus and pancreatic carcinoma progression
Authors:
Pavel Škrha 1; Jan Hajer 1; Michal Anděl 1; Aleš Hořínek 2; Marie Korabečná 3
Authors place of work:
II. interní klinika 3. LF UK a FNKV, Praha
1; III. interní klinika 1. LF UK a VFN, Praha
2; Ústav biologie a lékařské genetiky 1. LF UK a VFN, Praha
3
Published in the journal:
Čas. Lék. čes. 2015; 154: 122-126
Category:
Review Article
Summary
Pancreatic cancer is a disease with increasing incidence and high (and nearly unchanged) lethality that is caused mainly due to its late diagnosis. Risk factors for neoplastic transformation are especially chronic pancreatitis, diabetes mellitus, but also obesity and smoking. The search for suitable early markers becomes a key element of research in this area. Such markers could be microRNAs, short single-stranded RNA molecules functioning as regulators of translation. This article serves as a review of contemporary evidence of microRNA in diabetes mellitus and pancreatic cancer.
Keywords:
diabetes mellitus – miRNA – pancreatic cancer – chronic pancreatitis
Zdroje
1. Locke JM, et al. MicroRNA expression profiling of human islets from individuals with and without Type 2 diabetes: promises and pitfalls. Biochem Soc Trans 2012; 40: 800–803.
2. Ruvkun G. Molecular biology: Glimpses of a tiny RNA world. Science 2001; 294(5543): 797–799.
3. Lee RC, et al. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843–854.
4. Rodriguez A, et al. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14: 1902–1910.
5. Lee Y, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051–4060.
6. Kim V. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6: 376–385.
7. Gregory RI, et al. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol 2006; 342: 33–47.
8. Lee Y. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–419.
9. Lynn FC. Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 2009; 20(9): 452–459.
10. Murchison EP, et al. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 2004; 16(3): 223–229.
11. Leisegang MS, et al. Exportin T and Exportin 5: tRNA and miRNA biogenesis – and beyond. Biol Chem 2012; 393(7): 599–604.
12. Lynn FC, et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 2007; 56(12): 2938–2945.
13. Carthew RW, et al. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642–655.
14. Tsui NBY, et al. Stability of Endogenous and Added RNA in Blood Specimens, Serum, and Plasma. Clin Chem 2002; 48 (10): 1647–1653.
15. Zampetaki A, et al. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc res 2012; 93: 555–562.
16. Xiao D, et al. Identifying mRNA, MicroRNA and Protein Profiles of Melanoma Exosomes. PLoS One 2012; 7(10): e46874. doi:10.1371/journal.pone.0046874
17. Hunter MP, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 2008; 3(11): e3694. doi: 10.1371/journal.pone.0003694.
18. Bidzhekov K, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2(100): 81.
19. Vickers KC, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011; 13: 423–433.
20. Xing L, et al. HDL drug carriers for targeted therapy. Clin Chim Acta 2013; 415: 94–100.
21. Uno Y, et al. High-density lipoprotein facilitates in vivo delivery of alpha-tocopherol-conjugated short-interfering RNA to the brain. Hum Gene Ther 2011; 22: 711–719.
22. Dehwah MA, et al. MicroRNAs and Type 2 Diabetes/Obesity. J Genet Genomics 2012; 39: 11–18.
23. Hezova R, et al. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol 2010; 260(2): 70–74.
24. Nielsen LB, et al. Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression. Exp Diabetes Res 2012; 2012: 896362. doi:10.1155/2012/896362
25. Kong L, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48(1): 61–69.
26. Poy MN, et al. A pancreatic islet-specific micrRNA regulates insulin secretion. Nature 2004; 432: 226–230.
27. Poy MN, et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 2009; 106(14): 5813–5818.
28. Krek A, et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.
29. Roggli E, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic B-cells. Diabetes 2010; 59: 978–986.
30. Plaisance V, et al. MicroRNA-9 controls the expression of Granuphilin/Slt4 and the secretory response of insulin-producing cells. J Biol Chem 2006; 281: 26932–26942.
31. Ramachandran D, et al. Sirt1 and miR-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic B-islets. FEBS J 2011; 278: 1167–1174.
32. Zampetaki A, et al. Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes. Circ Res 2010; 107(6): 810–817.
33. Fichtlscherer S, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res 2010; 107: 677–684.
34. Ryu HS, et al. The induction of MicroRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLos ONE 2011; 6: e17343.
35. Zampetaki A, et al. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc res 2012; 93(4): 555–562.
36. GLOBOCAN 2008 (IARC) Section of Cancer Information. (Online) 2008. (Citace: 2. 1. 2013) http://globocan.iarc.fr/factsheet.asp.
37. Jemal A, et al. Cancer statistics. CA Cancer J Clin 2005; 55: 10–30.
38. Zavoral M. Gastroenterologie: Nádory pankreatu, žlučového ústrojí a Vaterovy papily. Mařatka Z. (ed.) Praha: Karolinum 1999; 385–405.
39. Zubel A, et al. Expression of ADAM9 in CIN3 lesions and squamous cell carcinomas of the cervix. Gynecol Oncol 2009; 114(2): 332–336.
40. Fritzsche FR, et al. ADAM9 Expression is a Significant and Independent Prognostic Marker of PSA Relapse in Prostate Cancer. Eur Urol 2008; 54(5): 1097–1108.
41. Frampton AE, et al. Loss of miR-126 is crucial to pancreatic cancer progression. Expert Rev Anticancer Ther 2012; 12(7): 881–884.
42. Hanoun N, et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin Chem 2010; 56(7): 1107–1118.
43. Zhang S, et al. Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 2011; 32(8): 1183–1189.
44. Song S, et al. Expression levels of microRNA-375 in pancreatic cancer. Biomed Rep 2013; 1(3): 393–398. Epub 2013 Mar 27.
45. Zhu Z, et al. Expression of microRNA-218 in human pancreatic ductal adenocarcinoma and its correlation with tumor progression and patient survival. J Surg Oncol 2014; 109(2): 89–94.
46. Liu J, et al. Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. Int J Cancer 2012; 131(3): 683–691.
47. Munding JB, et al. Global microRNA expression profiling of microdissected tissues identifies miR-135b as a novel biomarker for pancreatic ductal adenocarcinoma. Carcinogenesis 2012; 33(3): 637–643.
48. Panarelli NC, et al. MicroRNA Expression Aids the Preoperative Diagnosis of Pancreatic Ductal Adenocarcinoma. Pancreas 2012; 41(5): 685–690.
49. Feber A, et al. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 2008; 135(2): 255–260.
50. Yanaihara N, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189–198.
51. Schetter A, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299(4): 425–436.
52. Li Y, et al. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res 2009; 1286: 13–18.
53. Sheikh M, et al. Death Receptor Activation Complexes: It Takes Two to Activate TNF Receptor 1. Cell Cycle 2003; 2: 549–551.
54. Jackson L, et al. Chronic inflammation and pathogenesis of GI and pancreatic cancers. Cancer Treat Res 2006; 130: 39–65.
55. Dillhoff M, et al. miRNA-21 is Overexpressed in Pancreatic Cancer and a Potential Predictor of Survival. J Gastrointest Surg 2008; 12(12): 2171–2176.
56. Wang P, et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol 2013; 7(3): 334–345.
57. Nikiforova MN, et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 2008; 93: 1600–1608.
58. Volinia S, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103: 2257–2261.
59. Faraoni I, et al. miR-155 gene: A typical multifunctional microRNA. Biochim Biophys Acta 2009; 1792(6): 497–505.
60. Gironella M, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 2007; 104(41): 16170–16175.
61. Tomasini R, et al. TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem 2003; 278(39): 37722–37729.
62. Bloomston M, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007; 297(17): 1901–1908.
63. Wang J, et al. Circulating microRNAs in Pancreatic Juice as Candidate Biomarkers of Pancreatic Cancer. J Cancer 2014; 5(8): 696–705.
64. Pereira DM, et al. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today 2013; 18(5–6): 282–289.
Štítky
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental HygienistČlánok vyšiel v časopise
Journal of Czech Physicians
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
Najčítanejšie v tomto čísle
- History of insulin production in Czechoslovakia
-
Spiritualita a etika v psychosomatické medicíně –
biopsychosociospirituální vztahy - Stem cells in orthopaedics
- Preparedness of health system in Israel for mass emergencies