Management of bone defects using the Masquelet technique of induced membrane
Authors:
M. Debnar 1,2; L. Kopp 1,2; R. Mišičko 1
Authors‘ workplace:
Klinika úrazové chirurgie Fakulty zdravotnických studií Univerzity J. E. Purkyně v Ústí nad Labem a Krajské, zdravotní a. s. – Masarykovy nemocnice v Ústí nad Labem
1; Ústav anatomie, 2. lékařská fakulta Univerzity Karlovy, Praha
2
Published in:
Rozhl. Chir., 2021, roč. 100, č. 8, s. 390-397.
Category:
Original articles
doi:
https://doi.org/10.33699/PIS.2021.100.8.390–397
Overview
Introduction: Extensive bone defects are mostly caused by trauma, bone infection or bone tumours. The treatment is one of the most challenging issues of musculoskeletal surgery. Nowadays we have several techniques to deal with this problem. One of them is a two staged procedure described by Alain Masquelet, based on the principle of a foreign body-induced membrane with an autologous bone graft. The membrane, induced by a cement spacer, closes the defect and prevents resorption of the bone graft. In this paper we share our experience with this method.
Methods: We retrospectively analysed 10 patients who had been treated at our department between years 2012 and 2020. In addition to basic epidemiological data, we also collected data concerning the mechanism of injury, size of the defect, presence of infection and the infectious agent, type of spacer used and its retention, type of bone stabilization, time to full load, and time of full consolidation.
Results: We evaluated 10 patients with bone defects (5 of traumatic and 5 of infectious origin) operated at our department. Optimal healing free of complications was achieved in 50% of patients, and together with those where the 2nd phase had to be repeated, the success rate was 70%. Observed complications included two refractures, two cases of infection and one case of prolonged healing.
Conclusions: Bone defect management using the modified Masquelet technique has an important place in reconstructive surgery. If the indication criteria and correct procedures are observed, combined with motivated and cooperating patients, the results are favourable, particularly in the group of non-infectious defects. Compared to other options of bone defect management, this technique is less demanding both for the patient and the surgeon.
Keywords:
bone defect − Masquelet − induced membrane − nonunion − RIA
Sources
1. Ashman O, Phillips AM. Treatment of non-unions with bone defects: Which option and why? Injury 2013;44(1):43–45. doi:10.1016/S0020-1383(13)70010-X.
2. Romana MC, Masquelet AC. Vascularized periosteum associated with cancellous bone graft: an experimental study. Plast Reconstr Surg. 1990;85(4):587–592. doi:10.1097/00006534-199004000- 00014.
3. Masquelet AC, Fitoussi F, Begue T, et al. Reconstruction des os longs par membrane induite et autogreffe spongieuse. [In Franch] Ann Chir Plast Esthet. 2000;45:346–353.
4. Giannoudis PV, Faour O, Goff T, et al. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 2011;42:591–598. doi:10.1016/j.injury.2011.03.036.
5. Raven TF, Moghaddam A, Ermisch C, et al. Use of Masquelet technique in treatment of septic and atrophic fracture nonunion. Injury 2019;50(8):40–54. doi:10.1016/j.injury. 2019.06.018.
6. Karger C, Kishi T, Schneider L, et al. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res. 2012;98(1):97– 102. doi:10.1016/j.otsr.2011.11.001.
7. Pelissier P, Masquelet AC, Bareille R, et al. Induced membranes secrete growth factors including vascular and osteoinductive factors, and could stimulate bone regeneration. J Orthop Res. 2004;22:73–79. doi: 10.1016/S0736-0266(03)00165-7.
8. Klaue K, Knothe U, Anton C, et al. Bone regeneration in long – bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury 2009;40(Suppl 4):95–102. doi:10.1016/j. injury.2009.10.043.
9. Zwetyenga N, Catros S, Emparanza A, et al. Mandibular reconstruction using induced membranes with autologous cancellous bone graft and HA-betaTCP: animal model study and preliminary results in patients. Int J Oral Maxillofac Surg. 2009;38(12):1289–1297. doi:10.1016/j. ijom.2009.07.018.
10. Flamans B, Pauchot J, Petite H, et al. Use of the induced membrane technique for the treatment of bone defects in the hand or wrist, in emergency. Chir Main. 2010;29(5):307–314. ISSN:1769-6666.
11. Felden A, Aurégan JC, Badina A, et al. The induced membrane technique for bone defects of critical size after infection in children: a report of 3 consecutive cases. JBJS case Connect. 2016;6(3):e65. doi:10.2106/JBJS.CC.15.00252.
12. Biau DJ, Pannier S, Masquelet AC, et al. Case report: reconstruction of a 16-cm diaphyseal defect after Ewing´s resection in a child. Clin Orthop Relat Res. 2009;467(2):572–577. doi:10.1007/ s11999-008-0605-9.
13. Masquelet AC. Induced membrane technique: pearls and pitfalls. J Orthop Trauma 2017;31(Suppl. 5):36–38. doi:10.1097/ BOT.0000000000000979.
14. Nau C, Seebach C, Trumm A, et al. Alteration of Masquelet’s induced membrane characteristics by different kinds of antibiotic enriched bone cement in a critical size defect model in the rat’s femur. Injury 2016;47:325–334. doi:10.1016/j.injury. 2015.10.079.
15. Shah SR, Smith BT, Tatara AM, et al. Effects of local antibiotic delivery from porous space maintainers on infection clearance and induction of an osteogenic membrane in an infected bone defect. Tissue Eng Part A. 2017;23(3-4):91–100. doi:10.1089/ten.TEA.2016.0389.
16. Olesen UK, Eckharft H, Bosemark P, et al. The Masquelet technique of induced membrane for healing of bone defects. A review of 8 cases. Injury 2015;46(Suppl. 8):44–47. doi:10.1016/S0020-1383(15)30054-1.
17. Apard T, Bigorre N, Cronier P, et al. Twostage reconstruction of post-traumatic segmental tibia bone loss with nailing. Orthop Traumatol Surg Res. 2010;96:549– 553. doi:10.1016/j.otsr.2010.02.010.
18. Berebichez-Fridman R, Olvera PM, García RG, et al. An intramedullary nail coated with antibiotic and growth factor nanoparticles: An individualized state-ofthe- art treatment for chronic osteomyelitis with bone defects. Medical Hypotheses 2017;105(8):63–68. doi:10.1016/j. mehy.2017.06.023.
19. Masquelet AC, Kishi T, Benko PE. Very long-term results of post-traumatic bone defect reconstruction by the induced membrane technique. Orthop Traumatol Surg Res. 2019;105(1):159–166. doi:10.1016/j.otsr.2018.11.012.
20. Morwood MP, Streufert BD, Bauer A, et al. Intramedullary nails yield superior results compared with plate fixation when using the Masquelete technique in the femur and tibia. J Orthop Trauma. 2019;33(11):547–552. doi:10.1097/ BOT.0000000000001579.
21. Stafford PR, Norris BL. Reamer-irrigator- aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury 2010;41(Suppl. 2):72–77. doi:10.1016/ S0020-1383(10)70014-0.
22. Schmidmaier G, Herrmann S, Green J, et al. Quantitative assessment of growth factors in reaming aspirate, iliac crest, and preparation. Bone 2006;39(5):1156– 1163. doi:10.1016/j.bone.2006.05.023.
23. Belthur M, Conway J, Jindal G, et al. Bone graft harvest using a new intramedullary system. Clin Orthop Relat Res. 2008;466(12):2973–2980. doi:10.1007/ s11999-008-0538-3.
24. Marchand LS, Rothberg DL, Kubiak EN, et al. Is this autograft worth it? The blood loss and transfusion rates associated with reamer irrigator aspirator bone graft harvest. J Orthop Trauma. 2017;31(4):205–209. doi:10.1097/ BOT.0000000000000811.
25. Aurégan JC, Bégué T. Bioactive glass for long bone infection: a systematic review. Injury Int. J Care Injured 2015;46(8):3–7. doi:10.1016/S0020-1383(15)30048-6.
26. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224–247. doi:10.1016/j.bioactmat. 2017.05.007.
27. Yee MA, Mead MP, Alford AI, et al. Scientific understanding of the induced membrane technique. J Orthop Trauma 2017;31:3–8. doi:10.1097/bot.0000000000000981.
28. Aho OM, Lehenkari P, Ristiniemi J, et al. The mechanism of action of induced membranes in bone repair. J Bone Joint Surg Am. 2013;95(7):597–604. doi:10.2106/JBJS.L.00310.
29. Morelli I, Drago L, George DA, et al. Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury 2016;47(Suppl 6):68–76. doi:10.1016/S0020-1383(16)30842-7.
30. Gupta G, Ahmad S, Mohd Z, et al. Management of traumatic tibial diaphyseal bone defect by „induced membrane technique“. Indian J Orthop. 2016;50(3):290– 296. doi:10.4103/0019-5413.181780.
31. Azi ML, Teixeira A, Cotias RB, et al. Membrane induced osteogenesis in the management of post-traumatic bone defects. J Orthop Trauma 2016;30(10):545–550. doi:10.1097/BOT.0000000000000614.
32. Ristiniemi J, Lakovaara M, Flinkkilä T, et al. Staged method using antibiotic beads and subsequent autografting for large traumatic tibial bone loss: 22 of 23 fractures healed after 5–20 months. Acta Orthop. 2007;78(4):520–527. doi:10.1080/17453670710014176.
33. Gagyi SM, Toth Z, Kim D, et al. Altering spacer material affects bone regeneration in the Masquelet technique in a rat femoral defect. J Orthop Res. 2019;36(8):2228– 2238. doi:10.1002/jor.23866.
34. Verboket RD, Leiblein M, Janko M, et al. From two stages to one: acceleration of the induced membrane (Masquelet) technique using human acellular dermis for the treatment of non-infectious large bone defects. Eur J Trauma Emerg Surg. 2020;46(2):317–327. doi:10.1007/s00068- 019-01296-x.
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2021 Issue 8
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Most read in this issue
- Calcaneal fractures – current trends and pitfalls
- Acute and chronic Achilles tendon ruptures – current diagnostic and therapeutic options
- Spontaneous compartment syndrome of the forearm – case report
- Femoral shaft healing disorder − biomechanics and biology − case report