#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Antibiotic therapy of postoperative bronchopneumonia in patients after lung resections – single-site experience


Authors: J. Hanuliak;  M. Szkorupa;  J. Chudáček;  Dušan Klos ;  M. Gregořík;  T. Řezáč;  M. Stašek
Authors place of work: I. chirurgická klinika Fakultní nemocnice Olomouc
Published in the journal: Rozhl. Chir., 2022, roč. 101, č. 4, s. 168-175.
Category: Original articles
doi: https://doi.org/10.33699/PIS.2022.101.4.168–175

Summary

Introduction: Infectious complications after lung surgery are the most important factor that affects mortality and morbidity, prolongs hospital stays and increases financial costs. According to various sources, 30-day mortality after lung resections reaches 1−23%. Infectious complications account for 20−75% of overall mortality. The infections most often present as postoperative pneumonia (POP), and their treatment is based on empirical and targeted antibiotic therapy. Any time lag in initiating effective antibiotic therapy significantly increases morbidity and mortality. Postoperative pneumonia is defined according to current guidelines of the American Thoracic Society of 2016 as nosocomial or ventilator pneumonia in patients after surgery.

Methods: Evaluation of risk factors, infectious agents, morbidity and mortality in patients after lung resections at a single site in the period from 1 January 2018 to 31 December 2019.

Results: Of our group of 190 patients, 21 (11.1%) patients had POP which was severe in 6 (33% with POP) patients, and 11 patients with POP required artificial oxygenation for saturation below 92%. Two patients with POP had to be intubated for respiratory failure, and 3 patients required noradrenaline circulatory support. One patient with severe POP died of multiorgan failure after developing refractory sepsis.

Conclusion: Early identification of lung infection and early initiation of POP therapy are critical points for reducing morbidity and mortality after lung resections. Advanced antibiotic regimens for POP stratify the risk of mortality and infection with multidrug-resistant bacterial strains. However, the regimes require modification according to the epidemiological situation at the site with individualization of the specific procedure. Other research tasks include identification of valid markers of the initial stages of infection, and targeting of antibiotic therapy according to risk stratification and the relationship with physiological flora.

Keywords:

Lung resection – infectious complications – postoperative complications – pneumonia – antibiotic therapy


Zdroje

1. Watanabe S, Asamura H, Suzuki K, et al. Recent results of postoperative mortality for surgical resections in lung cancer. Ann Thorac Surg. 2004;78:999–1002. doi:10.1016/j.athoracsur.2004.04.007.

2. Wada HT, Nakamura N, Nakamoto K, et al. Thirty-day operative mortality for thoracotomy in lung cancer. J Thorac Cardiovasc Surg. 1998;115:70–73. doi:10.1016/ s0022-5223(98)70444-1.

3. Bernard AC, Deschamps C, Allen MS, et al. Pneumonectomy for malignant disease: factors affecting early morbidity and mortality. J Thorac Cardiovasc Surg. 2001;121:1076–1082. doi:10.1067/ mtc.2001.114350.

4. Doddoli C, Barlesi F, Trousse D, et al. One hundred consecutive pneumonectomies after induction therapy for non-small cell lung cancer: an uncertain balance between risks and benefits. J Thorac Cardiovasc Surg. 2005;130:416–425. doi:10.1016/j.jtcvs.2004.11.022.

5. Mitáš L, Horváth T, Sobotka M, et al. Komplikace u pacientů po operaci pro plicní malignitu. Rozhl Chir. 2010;89(2):113−117.

6. Bernard A, Ferrand L, Hagry O, et al. Identification of prognostic factors determining risk groups for lung resection. Ann Thorac Surg. 2000;70:1161–1167. doi:10.1016/ s0003-4975(00)01853-1.

7. Schussler O, Alifano M, Dermine H, et al. Postoperative pneumonia after major lung resection. Am J Respir Crit Care Med. 2006;173:1161–1169. doi:10.1164/ rccm.200510-1556OC.

8. Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016; 63: e61. doi:10.1093/cid/ciw353.

9. Swanson JM, Wells DL. Empirical antibiotic therapy for ventilator-associated pneumonia. Antibiotics (Basel) 2013;2:339. doi:10.3390/antibiotics2030339.

10. Paul M, Shani V, Muchtar E, et al. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother. 2010;54:4851. doi:10.1128/AAC.00627-10.

11. Baker AM, Meredith JW, Chang M, et al. Bronchoscopically guided management of ventilator-associated pneumonia in trauma patients. J Bronchology Interv Pulmonol. 2003;10:7.

12. Arulkumaran N, Routledge M, Schlebusch S, et al. Antimicrobial-associated harm in critical care: a narrative review. Intensive Care Med. 2020;46:225. doi:10.1007/ s00134-020-05929-3.

13. Rhee C, Kadri SS, Dekker JP, et al. Prevalence of antibiotic-resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad-spectrum empiric antibiotic use. JAMA Netw Open 2020; 3:e202899. doi:10.1001/jamanetworkopen. 2020.2899.

14. Eachempati SR, Hydo LJ, Shou J, et al. Does de-escalation of antibiotic therapy for ventilator-associated pneumonia affect the likelihood of recurrent pneumonia or mortality in critically ill surgical patients? J Trauma 2009;66:1343. doi:10.1097/ TA.0b013e31819dca4e.

15. Niederman MS, Soulountsi V. De-escalation therapy: is it valuable for the management of ventilator-associated pneumonia? Clin Chest Med. 2011;32:517. doi:10.1016/j.ccm.2011.05.009.

16. Abdul-Aziz MH, Portunato F, Roberts JA. Prolonged infusion of beta-lactam antibiotics for gram-negative infections: rationale and evidence base. Curr Opin Infect Dis. 2020 Dec;33(6):501−510. doi:10.1097/ QCO.0000000000000681.

17. Vardakas KZ, Voulgaris GL, Maliaros A, et al. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect Dis. 2018; 18:108. doi:10.1016/S1473-3099(17)30615-1.

18. Stolz D, Smyrnios N, Eggimann P, et al. Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomised study. Eur Respir J. 2009;34:1364. doi:10.1183/09031936.00053209.

19. Rello J, Rué M, Jubert P, et al. Survival in patients with nosocomial pneumonia: impact of the severity of illness and the etiologic agent. Crit Care Med. 1997;25:1862. doi:10.1097/00003246-199711000-00026.

20. Stolz A, Pafko P. a kolektiv. Komplikace v plicní chirurgii. Praha, Galén 2010.

21. Kollef KE, Schramm GE, Wills AR, et al. Predictors of 30-day mortality and hospital costs in patients with ventilator-associated pneumonia attributed to potentially antibioticresistant gram-negative bacteria. Chest 2008; 134:281. doi:10.1378/chest.08-1116.

22. Mirsaeidi M, Peyrani P, Ramirez JA. Predicting mortality in patients with ventilator-associated pneumonia: The APACHE II score versus the new IBMP-10 score. Clin Infect Dis. 2009;49:72. doi:10.1086/599349.

Štítky
Surgery Orthopaedics Trauma surgery

Článok vyšiel v časopise

Perspectives in Surgery

Číslo 4

2022 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#