Osteochondral Articular Junction and Osteoarthrosis
Authors:
J. Falta
Authors place of work:
Rehabilitační středisko FAUST, Náchod
Published in the journal:
Rehabil. fyz. Lék., 20, 2013, No. 4, pp. 179-188.
Category:
Original Papers
Summary
The article brings an overview of information concerning current knowledge about events on the articular osteochondral junction during physiological and pathological conditions.
Keywords:
hyaline cartilage, subchondral bone, osteochondral junction, osteoarthritis
Zdroje
1. BASSIL, J., SENNI K., CHANGOTADE, S., BAROUGH, B., KASSIS, C., NAAMAN, N., GODEAU, G.: Expression of MMP-2, 9 and 13 in newly formed bone after sinus augmentation using inorganic bovine bone in human. J. Periodontal. Res., 46, 2011, 6, s. 756-762.
2. BELLIDO, M., LUGO, L., ROMAN-BLAS, J. A. et al.: Improving subchondral boneintegrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthritis Cartilage, 19, 2011, s. 1228-1236.
3. BENDELE, A.M.: Animal models of osteoarthritis in an era of molecular biology. J. Musculoskelet. Neuronal Interact., 2, 2002, 6, s. 501-513.
4. BLOM, A. B., van der KRAAN, P. M., van den BERG, W. B.: Cytokine targeting in osteoarthritis. Curr. Drug. Targets, 8, 2007, s. 283-292.
5. BOYCE, B. F., XING, L.: Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys., 473, 2008, 2, s. 139-146.
6. BOYCE, B. F., YAO, Z., XING, L.: Functions of nuclear factor kappaB in bone. Ann. N. Y. Acad. Sci., 1192, 2010, s. 367-375.
7. BOYCE, B. F., ROSENBERG, E., de PAPP, A. E., DUONG, T.: The osteoclast, bone remodelling and treatment of metabolic bone disease. Eur. J. Clin. Inves., 42, 2012, 12, s. 1332-1341.
8. BRANDT, K. D.: Animal models of osteoarthritis. Biorheology, 39, 2002, s. 221-235.
9. BROWN,T. D., VRAHAS, M. S.: The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head. J. Orthop. Res., 2, 1984, 1, s. 32-38.
10. CASTANEDA, S., ROMAN-BLAS, J. A., LARGO, R. et al.: Subchondral bone as a key target for osteoarthritis treatment. Biochem. Pharmacol., 83, 2011, s. 315-332.
11. CLARK, J. M.: The organisation of collagen fibrils in the superficial zones of articular cartilage. J. Anat., 171, 1990, s. 117-130.
12. DOGAN, N., ERDEM, A. F., ERMAN, Z., KIZILKAYA, M.: The effects of bupivacaine and neostigmine on articular cartilage and synovium in the rabbit knee joint.Int. Med. Res., 32, 2004, 5, s. 513-519.
13. DUNCAN, H.: Cellular mechanisms of bone damage and repair in the arthritic joint. J. Rheumatol. Suppl., 11, 1983, s. 29-37.
14. DUNCAN, H, JUNDT, J., RIDDLE, J. M., PITCHFORD, W., CHRISTOPHERSON, T. The tibial subchondral plate. A scanning electron microscopic study. J. Bone Joint. Surg. Am., 69, 1987, 8, s. 1212-1220.
15. EBRAHIMIAN, T. G., SQUIBAN, C., ROQUE, T., LUGO-MARTINEZ, H., HNEINO, M., BUARD, V., GOURMELON, P., BENDERITTER, M., MILLIAT, F., TAMARAT, R.: Plasminogen activator inhibitor-1 controls bone marrow-derived cells therapeutic effect through MMP9 signaling: role in physiological and pathological wound healing. Stem Cells., 30, 2012, 7, s. 1436-1446.
16. ERDEN, I. A., ALTINEL, S., SARICAOGLU, F., ZEYBEK, N. D., AKINCI, S. B., ASAN, E., AYPAR, U.: Effect of intra-articular injection of levobupivacaine on articular cartilage and synovium in rats. Anaesthesist, 61, 2012, 5, s. 420-423.
17. FALTA, J.: nepublikované sdělení, 2013.
18. FERNANDES, J. C., MARTEL-PELLETIER, J., PELLETIER, J. P.: The role of cytokines in osteoarthritis pathophysiology. Biorheology, 39, 2002, 1-2, s. 237-246.
19. FUNCK-BRENTANO, T., COHEN-SOLAL, M.: Crosstalk between cartilage and bone: when bone cytokines matter. Cytokine Growth Factor Rev., 22, 2011, 2, s. 91-97.
20. GALASSO, O., FAMILIARI, F., De GORI, M., GASPARINI, G.: Recent findings on the role of gelatinases (matrix metalloproteinase-2 and -9) in osteoarthritis. Adv. Orthop., 2012, s. 83.
21. GOLDRING, M. B.: The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect. Tissue Res., 40, 1999, 1, s. 1-11.
22. GOLDRING, M. B, GOLDRING, S. R.: Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N.Y. Acad. Sci., 1192, 2010, s. 230-237.
23. HEDBOM, E., HAUSELMANN, H. J.: Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cell Mol. Life Sci., 59, 2002, 1, s. 45-53.
24. HENROTIN, Y., PESESSE, L., SANCHEZ, C.: Subchondral bone in osteoarthritis physiopathology: state-of-the art and perspectives. Biomed. Mater. Eng., 19, 2009, 4-5, s. 311-326.
25. HENROTIN, Y., PESESSE, L., SANCHEZ, C.: Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos. Int., Suppl., 8, 2012, s. 847-851.
26. HUBER, M., TRATTNING, S., LINTER, F.: Anatomy, biochemistry and physiology of articular cartilage. Investigations in Radiology, 35, 2000, 10, s. 573-580.
27. HUNTER, D. J., SPECTOR, T. D.: The role of bone metabolism in osteoarthritis. Curr. Rheumatol. Rep., 5, 2003, s. 15-19.
28. IMHOF, H., SULZBACHER, I., GRAMPP, S., CZERNY, C., YOUSSEFZADEH, S., KAINBERGER, F.: Subchondral bone and cartilage disease: a rediscovered functional unit. Invest. Radiol., 35, 2000, 10, s. 581-588.
29. KAAB, M. J., ITO, K., CLARK, J. M., NOTZI, H. P.: Deformation of articular cartilage collagen structure under static and cyclic loading. J. Orthopaed. Res., 16, 1998, 6, s. 743-751.
30. KAMEKURA, S., HOSHI, K., SHIMAOKA, T., CHUNG, U., CHIKUDA, H., YAMADA, T., UCHIDA, M., OGATA, N., SEICHI, A., NAKAMURA, K., KAWAGUCHI, H.: Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage, 13, 2005, 7, s. 632-641.
31. KOSTENUIK, P. J.: Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr, Opin. Pharmacol., 5, 2005, 6, s. 618-625.
32. LAJEUNESSE, D.: Subchondral bone involvement in the pathophysiology of osteoarthritis. Understanding Osteoarthritis from Bench to Bedside, 2011, s. 69-83.
33. LEE, C. R., GRODZINSKY, A. J., SPECTOR, M.: Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J. Biomed. Mater. Res., 64, 2003, 3, s. 560-569.
34. LODEWYCKX, L., LORIES, R. J.: WNT Signaling in osteoarthritis and osteoporosis: what is the biological significance for the clinician? Curr. Rheumatol. Rep., 11, 2009, 1, s. 23-30.
35. MADRY, H: The subchondral bone: a new frontier in articular cartilage repair. Knee Surg. Sports Traumatol. Arthrosc., 18, 2010, 4, s. 417-428.
36. MADRY, H., van DIJK, C. N., MUELLER-GERBL, M.: The basic science of the subchondral bone. Knee Surg. Sports Traumato. Arthrosc., 18, 2010, 4, s. 419-433.
37. MORRIS, N. P., KEENE, D. R., HORTON, W. A.: Morphology of connective tissue: Cartilage. In Connective Tissue and Its Heritable Disorders, ROYCE, P.M., STEINMAN, B., Wiley-Liss Inc., New York, 2002, s. 41-66.
38. MOW, V. C., HOLMES, M. H., LAI, W. M.: Fluid transport and mechanical properties of articular cartilage: a review. J. Biomechanics, 17, 1984, 5, s. 377-394.
39. MULLER-GERBL, M.: The subchondral bone plate. Adv. Ana. Embryol. Cell Biol., 141, 1998, s. 1-134.
40. RADIN, E. L., ROSE, R. M.: Role of subchondral bone in the initiation and progression of cartilage damage. Clin. Orthop. Relat. Res., 213, 1986, s. 34-40.
41. SANCHEZ, C., GABAY, O., HENROTIN, Y. E., BERENBAUM, F.: Osteoblast: a cell under compression. Biomed. Mate. Eng., 18, 2008, 4-5, s. 221-234.
42. SANCHEZ, C., GABAY, O., SALVAT, C., HENROTIN, Y. E., BERENBAUM, F.: Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts.Osteoarthritis Cartilage, 17, 2009, 4, s. 4734-4781.
43. VENKATESAN, J. K., EKICI, M., MADRY, H., SCHMITT, G., KOHN, D., CUCCHIARINI, M.: SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem. Cell Res. Ther., 3, 2012, 3, s. 22.
44. WADA, T., NAKASHIMA, T., HIROSHI, N., PENNINGER, J. M.: RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med., 12, 2006, 1, s.17-25.
45. WILUSZ, R. E., DEFRATE, L. E., GUILAK, F.: A biomechanical role for perlecan in the pericellular matrix of articular cartilage. Matrix Biol., 31, 2012, 6, s. 320-327.
46. WU, L., HUANG, X., LI, L., HUANG, H., XU, R., LUYTEN, W.: Insights on biology and pathology of HIF-1α/-2α, TGFβ/BMP, Wnt/β-catenin, and NF-κB pathways in osteoarthritis. Curr. Pharm. Des., 18, 2012, 22, s. 3293-3312.
47. XING, L., XIU, Y., BOYCE, B. F.: Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J. Orthop., 3, 2012, 12, s. 212-222.
Štítky
Physiotherapist, university degree Rehabilitation Sports medicineČlánok vyšiel v časopise
Rehabilitation and Physical Medicine
2013 Číslo 4
- Hope Awakens with Early Diagnosis of Parkinson's Disease Based on Skin Odor
- Deep stimulation of the globus pallidus improved clinical symptoms in a patient with refractory parkinsonism and genetic mutation
Najčítanejšie v tomto čísle
- Combined Training of Closed and Open Kinematic Chains in Rehabilitation Exemplified by the FLOWIN® System
- Osteochondral Articular Junction and Osteoarthrosis
- The Inclination and Shape Modulation of Cervicothoracic Connection of Spine Provoked by External Rotation of the Arm
- The Observation of the Dynamics of a Clinical Picture in a Chronic Cervicobrachial Syndrome with the Aid of the Principles of McKenzie Concept