Tekuté biopsie – klinika a molekuly
Tekuté biopsie – klinika a molekuly
Na rozdíl od klasických biopsií představují tekuté biopsie jemnější, více dostupný, méně bolestivý a komplexnější přístup, který je možné opakovat častěji, a umožňují tak získání biologicky relevantních informací o celém nádoru, ale i monitorování léčebné odpovědi a detekci minimální reziduální choroby. To je možné díky tomu, že periferní krev obsahuje nejen cirkulující nádorové buňky, ale také různé cirkulující molekuly nukleových kyselin (mikroRNA, mimobuněčné DNA, dlouhé nekódující RNA atd.). Mnohočetný myelom je geneticky heterogenní onemocnění charakterizované multifokálními nádorovými ložisky v kostní dřeni, ale i fokálními ložisky mimo kostní dřeň. Biopsie kostní dřeně z jednoho místa ovlivňuje molekulární profil, který je limitovaný místem odběru, protože taková biopsie neposkytne informaci ze všech klonů. Navíc během progrese nemoci a léčby se molekulární profil mění a subklony buněk mnohočetného myelomu se mohou stát rezistentními k léčbě. Navíc, různé klony, které se objevují v extramedulárních oblastech, které se navíc nenachází v kostní dřeni, reagují na léčbu jinak a přímo ovlivňují přežití pacientů. Pro nemoci jako je mnohočetný myelom se vyšetření pomocí tekuté biopsie jeví jako relevantní a nutný další krok.
Klíčová slova:
mnohočetný myelom – minimální reziduální choroba – prognóza – tekuté biopsie – mimobuněčné DNA – nekódující RNA
Tato práce byla podpořena grantem AZV 15-295 08A.
Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.
Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
Obdrženo:
15. 6. 2017
Přijato:
22. 6. 2017
Autoři:
V. Kubaczkova 1; L. Sedlarikova 1; B. Bollova 1; V. Sandecká 2; M. Stork 2; L. Pour 2; S. Sevcikova 1
Působiště autorů:
Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
1; Department of Internal Medicine – Hematooncology, University Hospital Brno, Czech Republic
2
Vyšlo v časopise:
Klin Onkol 2017; 30(Supplementum2): 13-20
Kategorie:
Přehled
prolekare.web.journal.doi_sk:
https://doi.org/10.14735/amko20172S13
Souhrn
Na rozdíl od klasických biopsií představují tekuté biopsie jemnější, více dostupný, méně bolestivý a komplexnější přístup, který je možné opakovat častěji, a umožňují tak získání biologicky relevantních informací o celém nádoru, ale i monitorování léčebné odpovědi a detekci minimální reziduální choroby. To je možné díky tomu, že periferní krev obsahuje nejen cirkulující nádorové buňky, ale také různé cirkulující molekuly nukleových kyselin (mikroRNA, mimobuněčné DNA, dlouhé nekódující RNA atd.). Mnohočetný myelom je geneticky heterogenní onemocnění charakterizované multifokálními nádorovými ložisky v kostní dřeni, ale i fokálními ložisky mimo kostní dřeň. Biopsie kostní dřeně z jednoho místa ovlivňuje molekulární profil, který je limitovaný místem odběru, protože taková biopsie neposkytne informaci ze všech klonů. Navíc během progrese nemoci a léčby se molekulární profil mění a subklony buněk mnohočetného myelomu se mohou stát rezistentními k léčbě. Navíc, různé klony, které se objevují v extramedulárních oblastech, které se navíc nenachází v kostní dřeni, reagují na léčbu jinak a přímo ovlivňují přežití pacientů. Pro nemoci jako je mnohočetný myelom se vyšetření pomocí tekuté biopsie jeví jako relevantní a nutný další krok.
Klíčová slova:
mnohočetný myelom – minimální reziduální choroba – prognóza – tekuté biopsie – mimobuněčné DNA – nekódující RNA
Tato práce byla podpořena grantem AZV 15-295 08A.
Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.
Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
Obdrženo:
15. 6. 2017
Přijato:
22. 6. 2017
Zdroje
1. Mithraprabhu S, Khong T, Ramachandran M et al. Circulating tumour DNA analysis demonstrates spatial mutational heterogeneity that coincides with disease relapse in myeloma. Leukemia. In press 2017. doi: 10.1038/leu.2016.366.
2. Hocking J, Mithraprabhu S, Kalff A et al. Liquid biopsies for liquid tumors: emerging potential of circulating free nucleic acid evaluation for the management of hematologic malignancies. Cancer Biol Med 2016; 13 (2): 215–225. doi: 10.20892/j.issn.2095-3941.2016.0025.
3. Shi Y, Huang J, Zhou J et al. MicroRNA-204 inhibits proliferation, migration, invasion and epithelial-mesenchymal transition in osteosarcoma cells via targeting Sirtuin 1. Oncol Rep 2015; 34 (1): 399–406. doi: 10.3892/or.2015.3986.
4. Sana J, Faltejskova P, Svoboda M et al. Novel classes of non-coding RNAs and cancer. J Transl Med 2012; 10: 103. doi: 10.1186/1479-5876-10-103.
5. Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2001; 2 (11): 986–991.
6. Taft RJ, Pheasant M, Mattick JS. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 2007; 29 (3): 288–299.
7. Calore F, Lovat F, Garofalo M. Non-coding RNAs and cancer. Int J Mol Sci 2013; 14 (3): 17085–17110. doi: 10.3390/ijms140817085.
8. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10 (6): 925–933. doi: 10.4161/rna.24604.
9. Slabý O, Svoboda M, Bešše A et al. MikroRNA v onkologii. Praha: Galén 2012.
10. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15 (6): 321–333. doi: 10.1038/nrc3932.
11. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12 (12): 861–874. doi: 10.1038/nrg3074.
12. He L, Thomson JM, Hemann MT et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435 (7043): 828–833.
13. Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315 (5818): 1576–1579.
14. Weber JA, Baxter DH, Zhang S et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56 (11): 1733–1741. doi: 10.1373/clinchem.2010.147405.
15. Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008; 105 (30): 10513–10518. doi: 10.1073/pnas.0804549105.
16. Wang K, Zhang S, Weber J et al. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 2010; 38 (20): 7248–7259. doi: 10.1093/nar/gkq601.
17. Jones CI, Zabolotskaya MV, King AJ et al. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br J Cancer 2012; 107 (12): 1987–1996. doi: 10.1038/bjc.2012.525.
18. Yoshizawa S, Ohyashiki JH, Ohyashiki M et al. Downregulated plasma miR-92a levels have clinical impact on multiple myeloma and related disorders. Blood Cancer J 2012; 2 (1): e53. doi: 10.1038/bcj.2011.51.
19. Huang J, Yu J, Li J et al. Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Med Oncol Northwood Lond Engl 2012; 29 (4): 2402–2408. doi: 10.1007/s12032-012-0210-3.
20. Qu X, Zhao M, Wu S et al. Circulating microRNA 483-5p as a novel biomarker for diagnosis survival prediction in multiple myeloma. Med Oncol Northwood Lond Engl 2014; 31 (10): 219. doi: 10.1007/s12032-014-0219-x.
21. Sevcikova S, Kubiczkova L, Sedlarikova L et al. Serum miR-29a as a marker of multiple myeloma. Leuk Lymphoma 2013; 54 (1): 189–191. doi: 10.3109/10428194.2012.704030.
22. Kubiczkova L, Kryukov F, Slaby O et al. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica 2014; 99 (3): 511–518. doi: 10.3324/haematol.2013.093500.
23. Rocci A, Hofmeister CC, Geyer S et al. Circulating miRNA markers show promise as new prognosticators for multiple myeloma. Leukemia 2014; 28 (9): 1922–1926. doi: 10.1038/leu.2014.155.
24. Hao M, Zang M, Wendlandt E et al. Low serum miR-19a expression as a novel poor prognostic indicator in multiple myeloma. Int J Cancer 2015; 136 (8): 1835–1844. doi: 10.1002/ijc.29199.
25. Navarro A, Díaz T, Tovar N et al. A serum microRNA signature associated with complete remission and progression after autologous stem-cell transplantation in patients with multiple myeloma. Oncotarget 2015; 6 (3): 1874–1883.
26. Hao M, Zang M, Zhao L et al. Serum high expression of miR-214 and miR-135b as novel predictor for myeloma bone disease development and prognosis. Oncotarget 2016; 7 (15): 19589–19600. doi: 10.18632/oncotarget.7319.
27. Manier S, Liu CJ, Avet-Loiseau H et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 2017; 129 (17): 2429–2436. doi: 10.1182/blood-2016-09-742296.
28. Zhang L, Pan L, Xiang B et al. Potential role of exosome-associated microRNA panels and in vivo environment to predict drug resistance for patients with multiple myeloma. Oncotarget 2016; 7 (21): 30876–30891. doi: 10.18632/oncotarget.9021.
29. Pour L, Sevcikova S, Greslikova H et al. Soft-tissue extramedullary multiple myeloma prognosis is significantly worse in comparison to bone-related extramedullary relapse. Haematologica 2014; 99 (2): 360–364. doi: 10.3324/haematol.2013.094409.
30. Besse L, Sedlarikova L, Kryukov F et al. Circulating Serum MicroRNA-130a as a Novel Putative Marker of Extramedullary Myeloma. PloS One 2015; 10 (9): e0137294. doi: 10.1371/journal.pone.0137294.
31. Kubiczkova Besse L, Sedlarikova L, Kryukov F et al. Combination of serum microRNA-320a and microRNA-320b as a marker for Waldenström macroglobulinemia. Am J Hematol 2015; 90 (3): E51–E52. doi: 10.1002/ajh.23910.
32. Sedlaříková L, Bešše L, Novosadová S et al. MicroRNAs in urine are not biomarkers of multiple myeloma. J Negat Results Biomed 2015; 14: 16. doi: 10.1186/s12952-015-0035-7.
33. Diederichs S. The four dimensions of noncoding RNA conservation. Trends Genet TIG 2014; 30 (4): 121–123. doi: 10.1016/j.tig.2014.01.004.
34. Gromesová B, Kubaczková V, Bollová B et al. Potential of Long Non-coding RNA Molecules in Diagnosis of Tumors. Klin Onkol 2016; 29 (1): 20–28. doi: 10.14735/amko201620.
35. Derrien T, Johnson R, Bussotti G et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22 (9): 1775–1789. doi: 10.1101/gr.132159.111.
36. Wang G, Li Z, Zhao Q et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep 2014; 31 (4): 1839–1845. doi: 10.3892/or.2014.3047.
37. Wei MM, Zhou GB. Long Non-coding RNAs and Their Roles in Non-small-cell Lung Cancer. Genomics Proteomics Bioinformatics 2016; 14 (5): 280–288. doi: 10.1016/j.gpb.2016.03.007.
38. Isin M, Ozgur E, Cetin G et al. Investigation of circulating lncRNAs in B-cell neoplasms. Clin Chim Acta 2014; 431: 255–259. doi: 10.1016/j.cca.2014.02.010.
39. Jahr S, Hentze H, Englisch S et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61 (4): 1659–1665.
40. Bryzgunova OE, Skvortsova TE, Kolesnikova EV et al. Isolation and comparative study of cell-free nucleic acids from human urine. Ann N Y Acad Sci 2006; 1075: 334–340.
41. Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l‘homme. C R Seances Soc Biol Fil 1948; 142 (3–4): 241–243.
42. Leon SA, Shapiro B, Sklaroff DM et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37 (3): 646–650.
43. Dwivedi DJ, Toltl LJ, Swystun LL et al. Prognostic utility and characterization of cell-free DNA in patients with severe sepsis. Crit Care Lond Engl 2012; 16 (4): R151. doi: 10.1186/cc11466.
44. Rainer TH, Wong LK, Lam W et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 2003; 49 (4): 562–569.
45. Basnet S, Zhang ZY, Liao WQ et al. The Prognostic Value of Circulating Cell-Free DNA in Colorectal Cancer: A Meta-Analysis. J Cancer 2016; 7 (9): 1105–1113. doi: 10.7150/jca.14801.
46. Chun FK, Müller I, Lange I et al. Circulating tumour-associated plasma DNA represents an independent and informative predictor of prostate cancer. BJU Int 2006; 98 (3): 544–548.
47. Stroun M, Lyautey J, Lederrey C et al. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta Int J Clin Chem 2001; 313 (1–2): 139–142.
48. Holdenrieder S, Stieber P, Chan LY et al. Cell-free DNA in serum and plasma: comparison of ELISA and quantitative PCR. Clin Chem 2005; 51 (8): 1544–1546.
49. Gahan PB, Anker P, Stroun M. Metabolic DNA as the origin of spontaneously released DNA? Ann N Y Acad Sci 2008; 1137: 7–17. doi: 10.1196/annals.1448.046.
50. Choi JJ, Reich CF, Pisetsky DS. The role of macrophages in the in vitro generation of extracellular DN from apoptotic and necrotic cells. Immunology 2005; 115 (1): 55–62.
51. Zeerleder S. The struggle to detect circulating DNA. Crit Care Lond Engl 2006; 10 (3): 142.
52. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer – a survey. Biochim Biophys Acta 2007; 1775 (1): 181–232.
53. Perkins G, Yap TA, Pope L et al. Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. PloS One 2012; 7 (11): e47020. doi: 10.1371/journal.pone.0047020.
54. Diehl F, Li M, Dressman D et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 2005; 102 (45): 16368–16373.
55. Hohaus S, Giachelia M, Massini G et al. Cell-free circulating DNA in Hodgkin’s and non-Hodgkin’s lymphomas. Ann Oncol 2009; 20 (8): 1408–1413. doi: 10.1093/ annonc/mdp006.
56. Gall TM, Frampton AE, Krell J et al. Cell-free DNA for the detection of pancreatic, liver and upper gastrointestinal cancers: has progress been made? Future Oncol 2013; 9 (12): 1861–1869. doi: 10.2217/fon.13.152.
57. de Haart SJ, Willems SM, Mutis T et al. Comparison of intramedullary myeloma and corresponding extramedullary soft tissue plasmacytomas using genetic mutational panel analyses. Blood Cancer J 2016; 6: e426. doi: 10.1038/bcj.2016.35.
58. Sata H, Shibayama H, Maeda I et al. Quantitative polymerase chain reaction analysis with allele-specific oligonucleotide primers for individual IgH VDJ regions to evaluate tumor burden in myeloma patients. Exp Hematol 2015; 43 (5): 374–381.e2. doi: 10.1016/j.exphem.2015.01.002.
59. Oberle A, Brandt A, Voigtlaender M et al. Monitoring multiple myeloma by next-generation sequencing of V (D) J rearrangements from circulating myeloma cells and cell-free myeloma DNA. Haematologica. In press 2017. doi: 10.3324/haematol.2016.161414.
60. Walker BA, Boyle EM, Wardell CP et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diag-nosed Myeloma. J Clin Oncol 2015; 33 (33): 3911–3920. doi: 10.1200/JCO.2014.59.1503.
Štítky
Detská onkológia Chirurgia všeobecná OnkológiaČlánok vyšiel v časopise
Klinická onkologie
2017 Číslo Supplementum2
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Nejasný stín na plicích – kazuistika
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
- Kombinace metamizol/paracetamol v léčbě pooperační bolesti u zákroků v rámci jednodenní chirurgie
- Tramadol a paracetamol v tlumení poextrakční bolesti
Najčítanejšie v tomto čísle
- Analýza minimální reziduální nemoci u mnohočetného myelomu pomocí multiparametrické průtokové cytometrie
- CRISPR ve výzkumu a léčbě mnohočetného myelomu
- Epidemiologie mnohočetného myelomu v České republice
- Diagnostické přístupy u Waldenströmovy makroglobulinemie – nejvhodnější dostupné možnosti neinvazivního a dlouhodobého monitorování nemoci