CTCF-Dependent Chromatin Bias Constitutes Transient Epigenetic Memory of the Mother at the Imprinting Control Region in Prospermatogonia
Genomic imprints—parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs) of imprinted genes—are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR) depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP–SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF–dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.
Vyšlo v časopise:
CTCF-Dependent Chromatin Bias Constitutes Transient Epigenetic Memory of the Mother at the Imprinting Control Region in Prospermatogonia. PLoS Genet 6(11): e32767. doi:10.1371/journal.pgen.1001224
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001224
Souhrn
Genomic imprints—parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs) of imprinted genes—are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR) depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP–SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF–dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.
Zdroje
1. Ferguson-SmithAC
SuraniMA
2001 Imprinting and the epigenetic asymmetry between parental genomes. Science 293 1086 1089
2. ReikW
WalterJ
2001 Genomic imprinting: parental influence on the genome. Nat Rev Genet 2 21 32
3. MannJR
SzabóPE
ReedMR
Singer-SamJ
2000 Methylated DNA sequences in genomic imprinting. Crit Rev Eukaryot Gene Expr 10 241 257
4. WutzA
SmrzkaOW
SchweiferN
SchellanderK
WagnerEF
1997 Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389 745 749
5. ThorvaldsenJL
BartolomeiMS
2000 Molecular biology. Mothers setting boundaries. Science 288 2145 2146
6. FitzpatrickGV
SolowayPD
HigginsMJ
2002 Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32 426 431
7. Ferguson-SmithA
LinSP
TsaiCE
YoungsonN
TevendaleM
2003 Genomic imprinting—insights from studies in mice. Semin Cell Dev Biol 14 43 49
8. WilliamsonCM
TurnerMD
BallST
NottinghamWT
GlenisterP
2006 Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet 38 350 355
9. HataK
OkanoM
LeiH
LiE
2002 Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129 1983 1993
10. LiE
BeardC
JaenischR
1993 Role for DNA methylation in genomic imprinting. Nature 366 362 365
11. Bourc'hisD
XuGL
LinCS
BollmanB
BestorTH
2001 Dnmt3L and the establishment of maternal genomic imprints. Science 294 2536 2539
12. KanedaM
OkanoM
HataK
SadoT
TsujimotoN
2004 Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429 900 903
13. BrannanCI
BartolomeiMS
1999 Mechanisms of genomic imprinting. Curr Opin Genet Dev 9 164 170
14. KafferCR
GrinbergA
PfeiferK
2001 Regulatory mechanisms at the mouse Igf2/H19 locus. Mol Cell Biol 21 8189 8196
15. LeightonPA
SaamJR
IngramRS
StewartCL
TilghmanSM
1995 An enhancer deletion affects both H19 and Igf2 expression. Genes Dev 9 2079 2089
16. BartolomeiMS
WebberAL
BrunkowME
TilghmanSM
1993 Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 7 1663 1673
17. TremblayKD
DuranKL
BartolomeiMS
1997 A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Biol 17 4322 4329
18. TremblayKD
SaamJR
IngramRS
TilghmanSM
BartolomeiMS
1995 A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet 9 407 413
19. LeightonPA
IngramRS
EggenschwilerJ
EfstratiadisA
TilghmanSM
1995 Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375 34 39
20. RipocheMA
KressC
PoirierF
DandoloL
1997 Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev 11 1596 1604
21. ThorvaldsenJL
DuranKL
BartolomeiMS
1998 Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 12 3693 3702
22. SrivastavaM
HsiehS
GrinbergA
Williams-SimonsL
HuangSP
2000 H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev 14 1186 1195
23. BellAC
FelsenfeldG
2000 Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405 482 485
24. HarkAT
SchoenherrCJ
KatzDJ
IngramRS
LevorseJM
2000 CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405 486 489
25. KafferCR
SrivastavaM
ParkKY
IvesE
HsiehS
2000 A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev 14 1908 1919
26. KanduriC
PantV
LoukinovD
PugachevaE
QiCF
2000 Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 10 853 856
27. SzabóP
TangSH
RentsendorjA
PfeiferGP
MannJR
2000 Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr Biol 10 607 610
28. BellAC
WestAG
FelsenfeldG
1999 The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98 387 396
29. MoonH
FilippovaG
LoukinovD
PugachevaE
ChenQ
2005 CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8 insulator. EMBO Rep 6 165 170
30. FilippovaGN
FagerlieS
KlenovaEM
MyersC
DehnerY
1996 An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16 2802 2813
31. SzabóPE
TangSH
SilvaFJ
TsarkWM
MannJR
2004 Role of CTCF binding sites in the Igf2/H19 imprinting control region. Mol Cell Biol 24 4791 4800
32. SchoenherrCJ
LevorseJM
TilghmanSM
2003 CTCF maintains differential methylation at the Igf2/H19 locus. Nat Genet 33 66 69
33. PantV
MarianoP
KanduriC
MattssonA
LobanenkovV
2003 The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev 17 586 590
34. HanL
LeeDH
SzabóPE
2008 CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region. Mol Cell Biol 28 1124 1135
35. LiT
HuJF
QiuX
LingJ
ChenH
2008 CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop. Mol Cell Biol 28 6473 6482
36. SinghP
HanL
RivasGE
LeeDH
NicholsonTB
2010 Allele-specific H3K79 Di- versus trimethylation distinguishes opposite parental alleles at imprinted regions. Mol Cell Biol 30 2693 2707
37. DavisTL
YangGJ
McCarreyJR
BartolomeiMS
2000 The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet 9 2885 2894
38. LiJY
Lees-MurdockDJ
XuGL
WalshCP
2004 Timing of establishment of paternal methylation imprints in the mouse. Genomics 84 952 960
39. UedaT
AbeK
MiuraA
YuzurihaM
ZubairM
2000 The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development. Genes Cells 5 649 659
40. HajkovaP
ErhardtS
LaneN
HaafT
El-MaarriO
2002 Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117 15 23
41. KatoY
KanedaM
HataK
KumakiK
HisanoM
2007 Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16 2272 2280
42. DavisTL
TraslerJM
MossSB
YangGJ
BartolomeiMS
1999 Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics 58 18 28
43. SzabóPE
HubnerK
ScholerH
MannJR
2002 Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech Dev 115 157 160
44. SzabóPE
MannJR
1995 Biallelic expression of imprinted genes in the mouse germ line: implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev 9 1857 1868
45. CicconeDN
SuH
HeviS
GayF
LeiH
2009 KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461 415 418
46. HajkovaP
AncelinK
WaldmannT
LacosteN
LangeUC
2008 Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452 877 881
47. SekiY
HayashiK
ItohK
MizugakiM
SaitouM
2005 Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 278 440 458
48. SekiY
YamajiM
YabutaY
SanoM
ShigetaM
2007 Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134 2627 2638
49. YatsukiH
JohK
HigashimotoK
SoejimaH
AraiY
2002 Domain regulation of imprinting cluster in Kip2/Lit1 subdomain on mouse chromosome 7F4/F5: large-scale DNA methylation analysis reveals that DMR-Lit1 is a putative imprinting control region. Genome Res 12 1860 1870
50. HiuraH
ObataY
KomiyamaJ
ShiraiM
KonoT
2006 Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 11 353 361
51. OlekA
OswaldJ
WalterJ
1996 A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res 24 5064 5066
52. JurinkeC
DenissenkoMF
OethP
EhrichM
van den BoomD
2005 A single nucleotide polymorphism based approach for the identification and characterization of gene expression modulation using MassARRAY. Mutat Res 573 83 95
53. LoukinovDI
PugachevaE
VatolinS
PackSD
MoonH
2002 BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci U S A 99 6806 6811
54. JelinicP
StehleJC
ShawP
2006 The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS Biol 4 e355 doi:10.1371/journal.pbio.0040355
55. FarrarD
RaiS
ChernukhinI
JagodicM
ItoY
2010 Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation. Mol Cell Biol 30 1199 1216
56. LefevreP
WithamJ
LacroixCE
CockerillPN
BoniferC
2008 The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol Cell 32 129 139
57. DelavalK
GovinJ
CerqueiraF
RousseauxS
KhochbinS
2007 Differential histone modifications mark mouse imprinting control regions during spermatogenesis. Embo J 26 720 729
58. KriaucionisS
HeintzN
2009 The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324 929 930
59. TahilianiM
KohKP
ShenY
PastorWA
BandukwalaH
2009 Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 930 935
60. JinSG
KadamS
PfeiferGP
2010 Examination of the specificity of DNA methylation profiling techniques toward 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38 e125
61. TamaruH
SelkerEU
2001 A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414 277 283
62. TamaruH
ZhangX
McMillenD
SinghPB
NakayamaJ
2003 Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet 34 75 79
63. JacksonJP
JohnsonL
JasencakovaZ
ZhangX
PerezBurgosL
2004 Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112 308 315
64. JacksonJP
LindrothAM
CaoX
JacobsenSE
2002 Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416 556 560
65. LehnertzB
UedaY
DerijckAA
BraunschweigU
Perez-BurgosL
2003 Suv39h-mediated histone h3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13 1192 1200
66. La SalleS
MertineitC
TaketoT
MoensPB
BestorTH
2004 Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells. Dev Biol 268 403 415
67. Lees-MurdockDJ
ShovlinTC
GardinerT
De FeliciM
WalshCP
2005 DNA methyltransferase expression in the mouse germ line during periods of de novo methylation. Dev Dyn 232 992 1002
68. LefevreC
MannJR
2008 RNA expression microarray analysis in mouse prospermatogonia: identification of candidate epigenetic modifiers. Dev Dyn 237 1082 1089
69. SakaiY
SuetakeI
ShinozakiF
YamashinaS
TajimaS
2004 Co-expression of de novo DNA methyltransferases Dnmt3a2 and Dnmt3L in gonocytes of mouse embryos. Gene Expr Patterns 5 231 237
70. ChedinF
LieberMR
HsiehCL
2002 The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99 16916 16921
71. OtaniJ
NankumoT
AritaK
InamotoS
AriyoshiM
2009 Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep 10 1235 1241
72. LuciferoD
MannMR
BartolomeiMS
TraslerJM
2004 Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 13 839 849
73. BuehrM
McLarenA
1993 Isolation and culture of primordial germ cells. Methods Enzymol 225 58 77
74. WoodMJ
WittinghamDG
RallWF
1987 The low temperature preservation of mouse oocytes and embryos, Mammalian Development: A Practical Approach (ed. M. Monk) pp 255–280.;
MonkM
Oxford IRL Press 255 280
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study Identifies Two Novel Regions at 11p15.5-p13 and 1p31 with Major Impact on Acute-Phase Serum Amyloid A
- Analysis of the 10q11 Cancer Risk Locus Implicates and in Human Prostate Tumorigenesis
- The Parental Non-Equivalence of Imprinting Control Regions during Mammalian Development and Evolution
- A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species (Green Peach Aphid)