#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic Basis of Growth Adaptation of after Deletion of , a Major Metabolic Gene


Bacterial survival requires adaptation to different environmental perturbations such as exposure to antibiotics, changes in temperature or oxygen levels, DNA damage, and alternative nutrient sources. During adaptation, bacteria often develop beneficial mutations that confer increased fitness in the new environment. Adaptation to the loss of a major non-essential gene product that cripples growth, however, has not been studied at the whole-genome level. We investigated the ability of Escherichia coli K-12 MG1655 to overcome the loss of phosphoglucose isomerase (pgi) by adaptively evolving ten replicates of E. coli lacking pgi for 50 days in glucose M9 minimal medium and by characterizing endpoint clones through whole-genome re-sequencing and phenotype profiling. We found that 1) the growth rates for all ten endpoint clones increased approximately 3-fold over the 50-day period; 2) two to five mutations arose during adaptation, most frequently in the NADH/NADPH transhydrogenases udhA and pntAB and in the stress-associated sigma factor rpoS; and 3) despite similar growth rates, at least three distinct endpoint phenotypes developed as defined by different rates of acetate and formate secretion. These results demonstrate that E. coli can adapt to the loss of a major metabolic gene product with only a handful of mutations and that adaptation can result in multiple, alternative phenotypes.


Vyšlo v časopise: Genetic Basis of Growth Adaptation of after Deletion of , a Major Metabolic Gene. PLoS Genet 6(11): e32767. doi:10.1371/journal.pgen.1001186
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001186

Souhrn

Bacterial survival requires adaptation to different environmental perturbations such as exposure to antibiotics, changes in temperature or oxygen levels, DNA damage, and alternative nutrient sources. During adaptation, bacteria often develop beneficial mutations that confer increased fitness in the new environment. Adaptation to the loss of a major non-essential gene product that cripples growth, however, has not been studied at the whole-genome level. We investigated the ability of Escherichia coli K-12 MG1655 to overcome the loss of phosphoglucose isomerase (pgi) by adaptively evolving ten replicates of E. coli lacking pgi for 50 days in glucose M9 minimal medium and by characterizing endpoint clones through whole-genome re-sequencing and phenotype profiling. We found that 1) the growth rates for all ten endpoint clones increased approximately 3-fold over the 50-day period; 2) two to five mutations arose during adaptation, most frequently in the NADH/NADPH transhydrogenases udhA and pntAB and in the stress-associated sigma factor rpoS; and 3) despite similar growth rates, at least three distinct endpoint phenotypes developed as defined by different rates of acetate and formate secretion. These results demonstrate that E. coli can adapt to the loss of a major metabolic gene product with only a handful of mutations and that adaptation can result in multiple, alternative phenotypes.


Zdroje

1. HerringCD

RaghunathanA

HonischC

PatelT

ApplebeeMK

2006 Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet 38 1406 1412

2. BarrickJE

YuDS

YoonSH

JeongH

OhTK

2009 Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461 1243 1247

3. BarrickJE

LenskiRE

2009 Genome-wide Mutational Diversity in an Evolving Population of Escherichia coli. Cold Spring Harb Symp Quant Biol

4. ConradTM

JoyceAR

ApplebeeMK

BarrettCL

XieB

2009 Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biol 10 R118

5. LeeDH

PalssonBO

Adaptive Evolution Of Escherichia coli K-12 MG1655 On A Non-Native Carbon Source, L-1,2-Propanediol. Appl Environ Microbiol

6. MaharjanR

ZhouZ

RenY

LiY

GaffeJ

Genomic identification of a novel mutation in hfq that provides multiple benefits in evolving glucose-limited populations of Escherichia coli. J Bacteriol

7. VelicerGJ

RaddatzG

KellerH

DeissS

LanzC

2006 Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. Proc Natl Acad Sci U S A 103 8107 8112

8. SumbyP

WhitneyAR

GravissEA

DeLeoFR

MusserJM

2006 Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog 2 e5 doi:10.1371/journal.ppat.0020005

9. MwangiMM

WuSW

ZhouY

SieradzkiK

de LencastreH

2007 Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 104 9451 9456

10. FriedmanL

AlderJD

SilvermanJA

2006 Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 50 2137 2145

11. AndriesK

VerhasseltP

GuillemontJ

GohlmannHW

NeefsJM

2005 A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307 223 227

12. AnderssonDI

HughesD

2010 Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8 260 271

13. FongSS

PalssonBO

2004 Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36 1056 1058

14. HuaQ

YangC

BabaT

MoriH

ShimizuK

2003 Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185 7053 7067

15. CanonacoF

HessTA

HeriS

WangT

SzyperskiT

2001 Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204 247 252

16. FeistAM

HenryCS

ReedJL

KrummenackerM

JoyceAR

2007 A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3 121

17. FongSS

JoyceAR

PalssonBO

2005 Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 15 1365 1372

18. BoonstraB

FrenchCE

WainwrightI

BruceNC

1999 The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181 1030 1034

19. AlperH

MoxleyJ

NevoigtE

FinkGR

StephanopoulosG

2006 Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314 1565 1568

20. SchneiderD

DuperchyE

CoursangeE

LenskiRE

BlotM

2000 Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156 477 488

21. StoebelDM

HokampK

LastMS

DormanCJ

2009 Compensatory evolution of gene regulation in response to stress by Escherichia coli lacking RpoS. PLoS Genet 5 e1000671 doi:10.1371/journal.pgen.1000671

22. NaasT

BlotM

FitchWM

ArberW

1994 Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics 136 721 730

23. RiehleMM

BennettAF

LongAD

2001 Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci U S A 98 525 530

24. ZambranoMM

SiegeleDA

AlmironM

TormoA

KolterR

1993 Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259 1757 1760

25. BabaT

AraT

HasegawaM

TakaiY

OkumuraY

2006 Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006 2 2006 0008

26. DongT

SchellhornHE

2009 Control of RpoS in global gene expression of Escherichia coli in minimal media. Mol Genet Genomics 281 19 33

27. Hengge-AronisR

2002 Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66 373 395, table of contents

28. Hengge-AronisR

2002 Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4 341 346

29. Notley-McRobbL

KingT

FerenciT

2002 rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 184 806 811

30. KingT

IshihamaA

KoriA

FerenciT

2004 A regulatory trade-off as a source of strain variation in the species Escherichia coli. J Bacteriol 186 5614 5620

31. FerenciT

2005 Maintaining a healthy SPANC balance through regulatory and mutational adaptation. Mol Microbiol 57 1 8

32. SauerU

CanonacoF

HeriS

PerrenoudA

FischerE

2004 The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279 6613 6619

33. BlattnerFR

PlunkettG3rd

BlochCA

PernaNT

BurlandV

1997 The complete genome sequence of Escherichia coli K-12. Science 277 1453 1462

34. MehtaP

CasjensS

KrishnaswamyS

2004 Analysis of the lambdoid prophage element e14 in the E. coli K-12 genome. BMC Microbiol 4 4

35. AertsenA

Van HoudtR

VanoirbeekK

MichielsCW

2004 An SOS response induced by high pressure in Escherichia coli. J Bacteriol 186 6133 6141

36. HarrisDR

PollockSV

WoodEA

GoiffonRJ

KlingeleAJ

2009 Directed evolution of ionizing radiation resistance in Escherichia coli. J Bacteriol 191 5240 5252

37. GreenerA

HillCW

1980 Identification of a novel genetic element in Escherichia coli K-12. J Bacteriol 144 312 321

38. PlasterkRH

van de PutteP

1985 The invertible P-DNA segment in the chromosome of Escherichia coli. Embo J 4 237 242

39. HillCW

GrayJA

BrodyH

1989 Use of the isocitrate dehydrogenase structural gene for attachment of e14 in Escherichia coli K-12. J Bacteriol 171 4083 4084

40. AndersenKB

von MeyenburgK

1980 Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol 144 114 123

41. HolmsWH

BennettPM

1971 Regulation of isocitrate dehydrogenase activity in Escherichia coli on adaptation to acetate. J Gen Microbiol 65 57 68

42. VemuriGN

AltmanE

SangurdekarDP

KhodurskyAB

EitemanMA

2006 Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72 3653 3661

43. RahmanM

ShimizuK

2008 Altered acetate metabolism and biomass production in several Escherichia coli mutants lacking rpoS-dependent metabolic pathway genes. Mol Biosyst 4 160 169

44. VeitA

PolenT

WendischVF

2007 Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl Microbiol Biotechnol 74 406 421

45. FongSS

NanchenA

PalssonBO

SauerU

2006 Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J Biol Chem 281 8024 8033

46. TischerBK

von EinemJ

KauferB

OsterriederN

2006 Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40 191 197

47. DatsenkoKA

WannerBL

2000 One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97 6640 6645

48. HerringCD

GlasnerJD

BlattnerFR

2003 Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311 153 163

49. AlbertTJ

DailidieneD

DailideG

NortonJE

KaliaA

2005 Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat Methods 2 951 953

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#