Genetic Basis of Growth Adaptation of after Deletion of , a Major Metabolic Gene
Bacterial survival requires adaptation to different environmental perturbations such as exposure to antibiotics, changes in temperature or oxygen levels, DNA damage, and alternative nutrient sources. During adaptation, bacteria often develop beneficial mutations that confer increased fitness in the new environment. Adaptation to the loss of a major non-essential gene product that cripples growth, however, has not been studied at the whole-genome level. We investigated the ability of Escherichia coli K-12 MG1655 to overcome the loss of phosphoglucose isomerase (pgi) by adaptively evolving ten replicates of E. coli lacking pgi for 50 days in glucose M9 minimal medium and by characterizing endpoint clones through whole-genome re-sequencing and phenotype profiling. We found that 1) the growth rates for all ten endpoint clones increased approximately 3-fold over the 50-day period; 2) two to five mutations arose during adaptation, most frequently in the NADH/NADPH transhydrogenases udhA and pntAB and in the stress-associated sigma factor rpoS; and 3) despite similar growth rates, at least three distinct endpoint phenotypes developed as defined by different rates of acetate and formate secretion. These results demonstrate that E. coli can adapt to the loss of a major metabolic gene product with only a handful of mutations and that adaptation can result in multiple, alternative phenotypes.
Vyšlo v časopise:
Genetic Basis of Growth Adaptation of after Deletion of , a Major Metabolic Gene. PLoS Genet 6(11): e32767. doi:10.1371/journal.pgen.1001186
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001186
Souhrn
Bacterial survival requires adaptation to different environmental perturbations such as exposure to antibiotics, changes in temperature or oxygen levels, DNA damage, and alternative nutrient sources. During adaptation, bacteria often develop beneficial mutations that confer increased fitness in the new environment. Adaptation to the loss of a major non-essential gene product that cripples growth, however, has not been studied at the whole-genome level. We investigated the ability of Escherichia coli K-12 MG1655 to overcome the loss of phosphoglucose isomerase (pgi) by adaptively evolving ten replicates of E. coli lacking pgi for 50 days in glucose M9 minimal medium and by characterizing endpoint clones through whole-genome re-sequencing and phenotype profiling. We found that 1) the growth rates for all ten endpoint clones increased approximately 3-fold over the 50-day period; 2) two to five mutations arose during adaptation, most frequently in the NADH/NADPH transhydrogenases udhA and pntAB and in the stress-associated sigma factor rpoS; and 3) despite similar growth rates, at least three distinct endpoint phenotypes developed as defined by different rates of acetate and formate secretion. These results demonstrate that E. coli can adapt to the loss of a major metabolic gene product with only a handful of mutations and that adaptation can result in multiple, alternative phenotypes.
Zdroje
1. HerringCD
RaghunathanA
HonischC
PatelT
ApplebeeMK
2006 Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet 38 1406 1412
2. BarrickJE
YuDS
YoonSH
JeongH
OhTK
2009 Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461 1243 1247
3. BarrickJE
LenskiRE
2009 Genome-wide Mutational Diversity in an Evolving Population of Escherichia coli. Cold Spring Harb Symp Quant Biol
4. ConradTM
JoyceAR
ApplebeeMK
BarrettCL
XieB
2009 Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biol 10 R118
5. LeeDH
PalssonBO
Adaptive Evolution Of Escherichia coli K-12 MG1655 On A Non-Native Carbon Source, L-1,2-Propanediol. Appl Environ Microbiol
6. MaharjanR
ZhouZ
RenY
LiY
GaffeJ
Genomic identification of a novel mutation in hfq that provides multiple benefits in evolving glucose-limited populations of Escherichia coli. J Bacteriol
7. VelicerGJ
RaddatzG
KellerH
DeissS
LanzC
2006 Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. Proc Natl Acad Sci U S A 103 8107 8112
8. SumbyP
WhitneyAR
GravissEA
DeLeoFR
MusserJM
2006 Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog 2 e5 doi:10.1371/journal.ppat.0020005
9. MwangiMM
WuSW
ZhouY
SieradzkiK
de LencastreH
2007 Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 104 9451 9456
10. FriedmanL
AlderJD
SilvermanJA
2006 Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 50 2137 2145
11. AndriesK
VerhasseltP
GuillemontJ
GohlmannHW
NeefsJM
2005 A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307 223 227
12. AnderssonDI
HughesD
2010 Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8 260 271
13. FongSS
PalssonBO
2004 Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36 1056 1058
14. HuaQ
YangC
BabaT
MoriH
ShimizuK
2003 Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185 7053 7067
15. CanonacoF
HessTA
HeriS
WangT
SzyperskiT
2001 Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204 247 252
16. FeistAM
HenryCS
ReedJL
KrummenackerM
JoyceAR
2007 A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3 121
17. FongSS
JoyceAR
PalssonBO
2005 Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 15 1365 1372
18. BoonstraB
FrenchCE
WainwrightI
BruceNC
1999 The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181 1030 1034
19. AlperH
MoxleyJ
NevoigtE
FinkGR
StephanopoulosG
2006 Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314 1565 1568
20. SchneiderD
DuperchyE
CoursangeE
LenskiRE
BlotM
2000 Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156 477 488
21. StoebelDM
HokampK
LastMS
DormanCJ
2009 Compensatory evolution of gene regulation in response to stress by Escherichia coli lacking RpoS. PLoS Genet 5 e1000671 doi:10.1371/journal.pgen.1000671
22. NaasT
BlotM
FitchWM
ArberW
1994 Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics 136 721 730
23. RiehleMM
BennettAF
LongAD
2001 Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci U S A 98 525 530
24. ZambranoMM
SiegeleDA
AlmironM
TormoA
KolterR
1993 Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259 1757 1760
25. BabaT
AraT
HasegawaM
TakaiY
OkumuraY
2006 Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006 2 2006 0008
26. DongT
SchellhornHE
2009 Control of RpoS in global gene expression of Escherichia coli in minimal media. Mol Genet Genomics 281 19 33
27. Hengge-AronisR
2002 Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66 373 395, table of contents
28. Hengge-AronisR
2002 Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4 341 346
29. Notley-McRobbL
KingT
FerenciT
2002 rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 184 806 811
30. KingT
IshihamaA
KoriA
FerenciT
2004 A regulatory trade-off as a source of strain variation in the species Escherichia coli. J Bacteriol 186 5614 5620
31. FerenciT
2005 Maintaining a healthy SPANC balance through regulatory and mutational adaptation. Mol Microbiol 57 1 8
32. SauerU
CanonacoF
HeriS
PerrenoudA
FischerE
2004 The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279 6613 6619
33. BlattnerFR
PlunkettG3rd
BlochCA
PernaNT
BurlandV
1997 The complete genome sequence of Escherichia coli K-12. Science 277 1453 1462
34. MehtaP
CasjensS
KrishnaswamyS
2004 Analysis of the lambdoid prophage element e14 in the E. coli K-12 genome. BMC Microbiol 4 4
35. AertsenA
Van HoudtR
VanoirbeekK
MichielsCW
2004 An SOS response induced by high pressure in Escherichia coli. J Bacteriol 186 6133 6141
36. HarrisDR
PollockSV
WoodEA
GoiffonRJ
KlingeleAJ
2009 Directed evolution of ionizing radiation resistance in Escherichia coli. J Bacteriol 191 5240 5252
37. GreenerA
HillCW
1980 Identification of a novel genetic element in Escherichia coli K-12. J Bacteriol 144 312 321
38. PlasterkRH
van de PutteP
1985 The invertible P-DNA segment in the chromosome of Escherichia coli. Embo J 4 237 242
39. HillCW
GrayJA
BrodyH
1989 Use of the isocitrate dehydrogenase structural gene for attachment of e14 in Escherichia coli K-12. J Bacteriol 171 4083 4084
40. AndersenKB
von MeyenburgK
1980 Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol 144 114 123
41. HolmsWH
BennettPM
1971 Regulation of isocitrate dehydrogenase activity in Escherichia coli on adaptation to acetate. J Gen Microbiol 65 57 68
42. VemuriGN
AltmanE
SangurdekarDP
KhodurskyAB
EitemanMA
2006 Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72 3653 3661
43. RahmanM
ShimizuK
2008 Altered acetate metabolism and biomass production in several Escherichia coli mutants lacking rpoS-dependent metabolic pathway genes. Mol Biosyst 4 160 169
44. VeitA
PolenT
WendischVF
2007 Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl Microbiol Biotechnol 74 406 421
45. FongSS
NanchenA
PalssonBO
SauerU
2006 Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J Biol Chem 281 8024 8033
46. TischerBK
von EinemJ
KauferB
OsterriederN
2006 Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40 191 197
47. DatsenkoKA
WannerBL
2000 One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97 6640 6645
48. HerringCD
GlasnerJD
BlattnerFR
2003 Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 311 153 163
49. AlbertTJ
DailidieneD
DailideG
NortonJE
KaliaA
2005 Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat Methods 2 951 953
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study Identifies Two Novel Regions at 11p15.5-p13 and 1p31 with Major Impact on Acute-Phase Serum Amyloid A
- Analysis of the 10q11 Cancer Risk Locus Implicates and in Human Prostate Tumorigenesis
- The Parental Non-Equivalence of Imprinting Control Regions during Mammalian Development and Evolution
- A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species (Green Peach Aphid)