#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in


The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria.


Vyšlo v časopise: The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in. PLoS Genet 6(11): e32767. doi:10.1371/journal.pgen.1001207
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001207

Souhrn

The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria.


Zdroje

1. FrostLS

LeplaeR

SummersAO

ToussaintA

2005 Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3 722 732

2. WozniakRA

WaldorMK

2010 Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8 552 563

3. NavarreWW

McClellandM

LibbySJ

FangFC

2007 Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 21 1456 1471

4. DormanCJ

2007 H-NS, the genome sentinel. Nat Rev Microbiol 5 157 161

5. FangFC

RimskyS

2008 New insights into transcriptional regulation by H-NS. Curr Opin Microbiol 11 113 120

6. GordonBR

ImperialR

WangL

NavarreWW

LiuJ

2008 Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins. J Bacteriol 190 7052 7059

7. GordonBR

LiY

WangL

SintsovaA

van BakelH

2010 Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107 5154 5159

8. AlbanoM

SmitsWK

HoLT

KraigherB

Mandic-MulecI

2005 The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J Bacteriol 187 2010 2019

9. HoaTT

TortosaP

AlbanoM

DubnauD

2002 Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol 43 15 26

10. BerkaRM

HahnJ

AlbanoM

DraskovicI

PersuhM

2002 Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol Microbiol 43 1331 1345

11. OguraM

YamaguchiH

KobayashiK

OgasawaraN

FujitaY

2002 Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 184 2344 2351

12. AuchtungJM

LeeCA

MonsonRE

LehmanAP

GrossmanAD

2005 Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc Natl Acad Sci U S A 102 12554 12559

13. BurrusV

PavlovicG

DecarisB

GuedonG

2002 The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid 48 77 97

14. VeeningJW

SmitsWK

HamoenLW

JongbloedJD

KuipersOP

2004 Visualization of differential gene expression by improved cyan fluorescent protein and yellow fluorescent protein production in Bacillus subtilis. Appl Environ Microbiol 70 6809 6815

15. MickaB

GrochN

HeinemannU

MarahielMA

1991 Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA-binding protein HBsu. J Bacteriol 173 3191 3198

16. ShanerNC

CampbellRE

SteinbachPA

GiepmansBN

PalmerAE

2004 Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22 1567 1572

17. MickaB

MarahielMA

1992 The DNA-binding protein HBsu is essential for normal growth and development in Bacillus subtilis. Biochimie 74 641 650

18. BreierAM

GrossmanAD

2007 Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol 64 703 718

19. KunstF

OgasawaraN

MoszerI

AlbertiniAM

AlloniG

1997 The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390 249 256

20. NicolasP

BizeL

MuriF

HoebekeM

RodolpheF

2002 Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res 30 1418 1426

21. KohlerP

MarahielMA

1997 Association of the histone-like protein HBsu with the nucleoid of Bacillus subtilis. J Bacteriol 179 2060 2064

22. TakemaruK

MizunoM

SatoT

TakeuchiM

KobayashiY

1995 Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141 323 327

23. LazarevicV

DusterhoftA

SoldoB

HilbertH

MauelC

1999 Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology 145 Pt 5 1055 1067

24. KroghS

O'ReillyM

NolanN

DevineKM

1996 The phage-like element PBSX and part of the skin element, which are resident at different locations on the Bacillus subtilis chromosome, are highly homologous. Microbiology 142 Pt 8 2031 2040

25. LucchiniS

RowleyG

GoldbergMD

HurdD

HarrisonM

2006 H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2 e81 doi:10.1371/journal.ppat.0020081

26. NavarreWW

PorwollikS

WangY

McClellandM

RosenH

2006 Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313 236 238

27. SmitsWK

HoaTT

HamoenLW

KuipersOP

DubnauD

2007 Antirepression as a second mechanism of transcriptional activation by a minor groove binding protein. Mol Microbiol 64 368 381

28. ZhangY

2008 I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9 40

29. KelleyLA

SternbergMJ

2009 Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4 363 371

30. DormanCJ

HintonJC

FreeA

1999 Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol 7 124 128

31. AuchtungJM

LeeCA

GarrisonKL

GrossmanAD

2007 Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis. Mol Microbiol 64 1515 1528

32. BoseB

AuchtungJM

LeeCA

GrossmanAD

2008 A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol Microbiol 70 570 582

33. LeeCA

AuchtungJM

MonsonRE

GrossmanAD

2007 Identification and characterization of int (integrase), xis (excisionase), and chromosomal attachment sites of the integrative and conjugative element ICEBs1 of Bacillus subtilis. Mol Microbiol 66 1356 1369

34. LeeCA

BabicA

GrossmanAD

2010 Autonomous plasmid-like replication of a conjugative transposon. Mol Microbiol 75 268 279

35. HamoenLW

SmitsWK

de JongA

HolsappelS

KuipersOP

2002 Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30 5517 5528

36. BaileyTL

BodenM

BuskeFA

FrithM

GrantCE

2009 MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37 W202 208

37. TippnerD

WagnerR

1995 Fluorescence analysis of the Escherichia coli transcription regulator H-NS reveals two distinguishable complexes dependent on binding to specific or nonspecific DNA sites. J Biol Chem 270 22243 22247

38. ShindoH

OhnukiA

GinbaH

KatohE

UeguchiC

1999 Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy. FEBS Lett 455 63 69

39. LangB

BlotN

BouffartiguesE

BuckleM

GeertzM

2007 High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 35 6330 6337

40. LiuY

ChenH

KenneyLJ

YanJ

2010 A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev 24 339 344

41. DillonSC

DormanCJ

2010 Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8 185 195

42. DormanCJ

2010 Horizontally acquired homologues of the nucleoid-associated protein H-NS: implications for gene regulation. Mol Microbiol 75 264 267

43. ColangeliR

HelbD

VilchezeC

HazbonMH

LeeCG

2007 Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog 3 e87 doi:10.1371/journal.ppat.0030087

44. ChenJM

RenH

ShawJE

WangYJ

LiM

2008 Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein. Nucleic Acids Res 36 2123 2135

45. StoebelDM

FreeA

DormanCJ

2008 Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology 154 2533 2545

46. JaacksKJ

HealyJ

LosickR

GrossmanAD

1989 Identification and characterization of genes controlled by the sporulation-regulatory gene spo0H in Bacillus subtilis. J Bacteriol 171 4121 4129

47. HarwoodCR

CuttingSM

1990 Molecular biological methods for Bacillus. Chichester, England John Wiley & Sons

48. BerkmenMB

LeeCA

LovedayEK

GrossmanAD

2010 Polar Positioning of a Conjugation Protein from the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis. J Bacteriol 192 38 45

49. SteinmetzM

RichterR

1994 Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene 142 79 83

50. YoungmanP

PothH

GreenB

YorkK

OlmedoG

1989 Methods for Genetic Manipulation, Cloning, and Functional Analysis of Sporulation Genes in Bacillus subtilis.

SmithI

SlepeckyRA

SetlowP

Regulation of Procaryotic Development Washington, D.C. ASM Press 65 87

51. WachA

1996 PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12 259 265

52. StudierFW

MoffattBA

1986 Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189 113 130

53. SmitsWK

GoranovAI

GrossmanAD

2010 Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo. Mol Microbiol 75 452 461

54. RagkousiK

CowanAE

RossMA

SetlowP

2000 Analysis of nucleoid morphology during germination and outgrowth of spores of Bacillus species. J Bacteriol 182 5556 5562

55. BreierAM

GrossmanAD

2009 Dynamic association of the replication initiator and transcription factor DnaA with the Bacillus subtilis chromosome during replication stress. J Bacteriol 191 486 493

56. EdgarR

DomrachevM

LashAE

2002 Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30 207 210

57. RoyA

KucukuralA

ZhangY

2010 I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5 725 738

58. PrideDT

WassenaarTM

GhoseC

BlaserMJ

2006 Evidence of host-virus co-evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic viruses. BMC Genomics 7 8

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#