The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in
The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria.
Vyšlo v časopise:
The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in. PLoS Genet 6(11): e32767. doi:10.1371/journal.pgen.1001207
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001207
Souhrn
The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria.
Zdroje
1. FrostLS
LeplaeR
SummersAO
ToussaintA
2005 Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3 722 732
2. WozniakRA
WaldorMK
2010 Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8 552 563
3. NavarreWW
McClellandM
LibbySJ
FangFC
2007 Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 21 1456 1471
4. DormanCJ
2007 H-NS, the genome sentinel. Nat Rev Microbiol 5 157 161
5. FangFC
RimskyS
2008 New insights into transcriptional regulation by H-NS. Curr Opin Microbiol 11 113 120
6. GordonBR
ImperialR
WangL
NavarreWW
LiuJ
2008 Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins. J Bacteriol 190 7052 7059
7. GordonBR
LiY
WangL
SintsovaA
van BakelH
2010 Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107 5154 5159
8. AlbanoM
SmitsWK
HoLT
KraigherB
Mandic-MulecI
2005 The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J Bacteriol 187 2010 2019
9. HoaTT
TortosaP
AlbanoM
DubnauD
2002 Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol 43 15 26
10. BerkaRM
HahnJ
AlbanoM
DraskovicI
PersuhM
2002 Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol Microbiol 43 1331 1345
11. OguraM
YamaguchiH
KobayashiK
OgasawaraN
FujitaY
2002 Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 184 2344 2351
12. AuchtungJM
LeeCA
MonsonRE
LehmanAP
GrossmanAD
2005 Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc Natl Acad Sci U S A 102 12554 12559
13. BurrusV
PavlovicG
DecarisB
GuedonG
2002 The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid 48 77 97
14. VeeningJW
SmitsWK
HamoenLW
JongbloedJD
KuipersOP
2004 Visualization of differential gene expression by improved cyan fluorescent protein and yellow fluorescent protein production in Bacillus subtilis. Appl Environ Microbiol 70 6809 6815
15. MickaB
GrochN
HeinemannU
MarahielMA
1991 Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA-binding protein HBsu. J Bacteriol 173 3191 3198
16. ShanerNC
CampbellRE
SteinbachPA
GiepmansBN
PalmerAE
2004 Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22 1567 1572
17. MickaB
MarahielMA
1992 The DNA-binding protein HBsu is essential for normal growth and development in Bacillus subtilis. Biochimie 74 641 650
18. BreierAM
GrossmanAD
2007 Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol 64 703 718
19. KunstF
OgasawaraN
MoszerI
AlbertiniAM
AlloniG
1997 The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390 249 256
20. NicolasP
BizeL
MuriF
HoebekeM
RodolpheF
2002 Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Res 30 1418 1426
21. KohlerP
MarahielMA
1997 Association of the histone-like protein HBsu with the nucleoid of Bacillus subtilis. J Bacteriol 179 2060 2064
22. TakemaruK
MizunoM
SatoT
TakeuchiM
KobayashiY
1995 Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141 323 327
23. LazarevicV
DusterhoftA
SoldoB
HilbertH
MauelC
1999 Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology 145 Pt 5 1055 1067
24. KroghS
O'ReillyM
NolanN
DevineKM
1996 The phage-like element PBSX and part of the skin element, which are resident at different locations on the Bacillus subtilis chromosome, are highly homologous. Microbiology 142 Pt 8 2031 2040
25. LucchiniS
RowleyG
GoldbergMD
HurdD
HarrisonM
2006 H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2 e81 doi:10.1371/journal.ppat.0020081
26. NavarreWW
PorwollikS
WangY
McClellandM
RosenH
2006 Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313 236 238
27. SmitsWK
HoaTT
HamoenLW
KuipersOP
DubnauD
2007 Antirepression as a second mechanism of transcriptional activation by a minor groove binding protein. Mol Microbiol 64 368 381
28. ZhangY
2008 I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9 40
29. KelleyLA
SternbergMJ
2009 Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4 363 371
30. DormanCJ
HintonJC
FreeA
1999 Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol 7 124 128
31. AuchtungJM
LeeCA
GarrisonKL
GrossmanAD
2007 Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis. Mol Microbiol 64 1515 1528
32. BoseB
AuchtungJM
LeeCA
GrossmanAD
2008 A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol Microbiol 70 570 582
33. LeeCA
AuchtungJM
MonsonRE
GrossmanAD
2007 Identification and characterization of int (integrase), xis (excisionase), and chromosomal attachment sites of the integrative and conjugative element ICEBs1 of Bacillus subtilis. Mol Microbiol 66 1356 1369
34. LeeCA
BabicA
GrossmanAD
2010 Autonomous plasmid-like replication of a conjugative transposon. Mol Microbiol 75 268 279
35. HamoenLW
SmitsWK
de JongA
HolsappelS
KuipersOP
2002 Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30 5517 5528
36. BaileyTL
BodenM
BuskeFA
FrithM
GrantCE
2009 MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37 W202 208
37. TippnerD
WagnerR
1995 Fluorescence analysis of the Escherichia coli transcription regulator H-NS reveals two distinguishable complexes dependent on binding to specific or nonspecific DNA sites. J Biol Chem 270 22243 22247
38. ShindoH
OhnukiA
GinbaH
KatohE
UeguchiC
1999 Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy. FEBS Lett 455 63 69
39. LangB
BlotN
BouffartiguesE
BuckleM
GeertzM
2007 High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 35 6330 6337
40. LiuY
ChenH
KenneyLJ
YanJ
2010 A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev 24 339 344
41. DillonSC
DormanCJ
2010 Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8 185 195
42. DormanCJ
2010 Horizontally acquired homologues of the nucleoid-associated protein H-NS: implications for gene regulation. Mol Microbiol 75 264 267
43. ColangeliR
HelbD
VilchezeC
HazbonMH
LeeCG
2007 Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog 3 e87 doi:10.1371/journal.ppat.0030087
44. ChenJM
RenH
ShawJE
WangYJ
LiM
2008 Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein. Nucleic Acids Res 36 2123 2135
45. StoebelDM
FreeA
DormanCJ
2008 Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology 154 2533 2545
46. JaacksKJ
HealyJ
LosickR
GrossmanAD
1989 Identification and characterization of genes controlled by the sporulation-regulatory gene spo0H in Bacillus subtilis. J Bacteriol 171 4121 4129
47. HarwoodCR
CuttingSM
1990 Molecular biological methods for Bacillus. Chichester, England John Wiley & Sons
48. BerkmenMB
LeeCA
LovedayEK
GrossmanAD
2010 Polar Positioning of a Conjugation Protein from the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis. J Bacteriol 192 38 45
49. SteinmetzM
RichterR
1994 Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene 142 79 83
50. YoungmanP
PothH
GreenB
YorkK
OlmedoG
1989 Methods for Genetic Manipulation, Cloning, and Functional Analysis of Sporulation Genes in Bacillus subtilis.
SmithI
SlepeckyRA
SetlowP
Regulation of Procaryotic Development Washington, D.C. ASM Press 65 87
51. WachA
1996 PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12 259 265
52. StudierFW
MoffattBA
1986 Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189 113 130
53. SmitsWK
GoranovAI
GrossmanAD
2010 Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo. Mol Microbiol 75 452 461
54. RagkousiK
CowanAE
RossMA
SetlowP
2000 Analysis of nucleoid morphology during germination and outgrowth of spores of Bacillus species. J Bacteriol 182 5556 5562
55. BreierAM
GrossmanAD
2009 Dynamic association of the replication initiator and transcription factor DnaA with the Bacillus subtilis chromosome during replication stress. J Bacteriol 191 486 493
56. EdgarR
DomrachevM
LashAE
2002 Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30 207 210
57. RoyA
KucukuralA
ZhangY
2010 I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5 725 738
58. PrideDT
WassenaarTM
GhoseC
BlaserMJ
2006 Evidence of host-virus co-evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic viruses. BMC Genomics 7 8
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study Identifies Two Novel Regions at 11p15.5-p13 and 1p31 with Major Impact on Acute-Phase Serum Amyloid A
- Analysis of the 10q11 Cancer Risk Locus Implicates and in Human Prostate Tumorigenesis
- The Parental Non-Equivalence of Imprinting Control Regions during Mammalian Development and Evolution
- A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species (Green Peach Aphid)