STAT Is an Essential Activator of the Zygotic Genome in the Early
Embryo
In many organisms, transcription of the zygotic genome begins during the
maternal-to-zygotic transition (MZT), which is characterized by a dramatic
increase in global transcriptional activities and coincides with embryonic stem
cell differentiation. In Drosophila, it has been shown that
maternal morphogen gradients and ubiquitously distributed general transcription
factors may cooperate to upregulate zygotic genes that are essential for pattern
formation in the early embryo. Here, we show that Drosophila
STAT (STAT92E) functions as a general transcription factor that, together with
the transcription factor Zelda, induces transcription of a large number of
early-transcribed zygotic genes during the MZT. STAT92E is present in the early
embryo as a maternal product and is active around the MZT. DNA–binding
motifs for STAT and Zelda are highly enriched in promoters of early zygotic
genes but not in housekeeping genes. Loss of Stat92E in the
early embryo, similarly to loss of zelda, preferentially
down-regulates early zygotic genes important for pattern formation. We further
show that STAT92E and Zelda synergistically regulate transcription. We conclude
that STAT92E, in conjunction with Zelda, plays an important role in
transcription of the zygotic genome at the onset of embryonic development.
Vyšlo v časopise:
STAT Is an Essential Activator of the Zygotic Genome in the Early
Embryo. PLoS Genet 7(5): e32767. doi:10.1371/journal.pgen.1002086
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002086
Souhrn
In many organisms, transcription of the zygotic genome begins during the
maternal-to-zygotic transition (MZT), which is characterized by a dramatic
increase in global transcriptional activities and coincides with embryonic stem
cell differentiation. In Drosophila, it has been shown that
maternal morphogen gradients and ubiquitously distributed general transcription
factors may cooperate to upregulate zygotic genes that are essential for pattern
formation in the early embryo. Here, we show that Drosophila
STAT (STAT92E) functions as a general transcription factor that, together with
the transcription factor Zelda, induces transcription of a large number of
early-transcribed zygotic genes during the MZT. STAT92E is present in the early
embryo as a maternal product and is active around the MZT. DNA–binding
motifs for STAT and Zelda are highly enriched in promoters of early zygotic
genes but not in housekeeping genes. Loss of Stat92E in the
early embryo, similarly to loss of zelda, preferentially
down-regulates early zygotic genes important for pattern formation. We further
show that STAT92E and Zelda synergistically regulate transcription. We conclude
that STAT92E, in conjunction with Zelda, plays an important role in
transcription of the zygotic genome at the onset of embryonic development.
Zdroje
1. EphrussiASt JohnstonD
2004
Seeing is believing: the bicoid morphogen gradient
matures.
Cell
116
143
152
2. St JohnstonDNusslein-VolhardC
1992
The origin of pattern and polarity in the Drosophila
embryo.
Cell
68
201
219
3. Nusslein-VolhardC
1991
Determination of the embryonic axes of
Drosophila.
Dev
Suppl 1
1
10
4. WieschausE
1996
Embryonic transcription and the control of developmental
pathways.
Genetics
142
5
10
5. De RenzisSElementoOTavazoieSWieschausEF
2007
Unmasking activation of the zygotic genome using chromosomal
deletions in the Drosophila embryo.
PLoS Biol
5
e117
doi:10.1371/journal.pbio.0050117
6. LawrencePAStruhlG
1996
Morphogens, compartments, and pattern: lessons from
drosophila?
Cell
85
951
961
7. DrieverWNusslein-VolhardC
1988
The bicoid protein determines position in the Drosophila embryo
in a concentration-dependent manner.
Cell
54
95
104
8. RothSSteinDNusslein-VolhardC
1989
A gradient of nuclear localization of the dorsal protein
determines dorsoventral pattern in the Drosophila embryo.
Cell
59
1189
1202
9. LiangHLNienCYLiuHYMetzsteinMMKirovNRushlowC
2008
The zinc-finger protein Zelda is a key activator of the early
zygotic genome in Drosophila.
Nature
10. LibermanLMStathopoulosA
2009
Design flexibility in cis-regulatory control of gene expression:
synthetic and comparative evidence.
Dev Biol
327
578
589
11. GalloSMLiLHuZHalfonMS
2006
REDfly: a Regulatory Element Database for
Drosophila.
Bioinformatics
22
381
383
12. MarksteinMMarksteinPMarksteinVLevineMS
2002
Genome-wide analysis of clustered Dorsal binding sites identifies
putative target genes in the Drosophila embryo.
Proc Natl Acad Sci U S A
99
763
768
13. MacdonaldPMStruhlG
1986
A molecular gradient in early Drosophila embryos and its role in
specifying the body pattern.
Nature
324
537
545
14. MlodzikMGehringWJ
1987
Expression of the caudal gene in the germ line of Drosophila:
formation of an RNA and protein gradient during early
embryogenesis.
Cell
48
465
478
15. SprengerFStevensLMNusslein-VolhardC
1989
The Drosophila gene torso encodes a putative receptor tyrosine
kinase.
Nature
338
478
483
16. CasanovaJStruhlG
1989
Localized surface activity of torso, a receptor tyrosine kinase,
specifies terminal body pattern in Drosophila.
Genes Dev
3
2025
2038
17. LiWX
2005
Functions and mechanisms of receptor tyrosine kinase Torso
signaling: Lessons from Drosophila embryonic terminal
development.
Dev Dyn
232
656
672
18. StathopoulosALevineM
2002
Dorsal gradient networks in the Drosophila
embryo.
Dev Biol
246
57
67
19. HouXSMelnickMBPerrimonN
1996
Marelle acts downstream of the Drosophila HOP/JAK kinase and
encodes a protein similar to the mammalian STATs [published erratum
appears in Cell 1996 Apr 19;85(2):following 290].
Cell
84
411
419
20. LiJLiWCalhounHCXiaFGaoFBLiWX
2003
Patterns and functions of STAT activation during Drosophila
embryogenesis.
Mech Dev
120
1455
1468
21. YanRSmallSDesplanCDearolfCRDarnellJEJr
1996
Identification of a Stat gene that functions in Drosophila
development.
Cell
84
421
430
22. LiWX
2008
Canonical and non-canonical JAK-STAT signaling.
Trends Cell Biol
18
545
551
23. LiJLiWX
2003
Drosophila gain-of-function mutant RTK torso triggers ectopic Dpp
and STAT signaling.
Genetics
164
247
258
24. LiJXiaFLiWX
2003
Coactivation of STAT and Ras is required for germ cell
proliferation and invasive migration in Drosophila.
Dev Cell
5
787
798
25. LiWXAgaisseHMathey-PrevotBPerrimonN
2002
Differential requirement for STAT by gain-of-function and
wild-type receptor tyrosine kinase Torso in Drosophila.
Development
129
4241
4248
26. JinksTMPolydoridesADCalhounGSchedlP
2000
The JAK/STAT signaling pathway is required for the initial choice
of sexual identity in Drosophila melanogaster.
Molecular Cell
5
581
587
27. ten BoschJRBenavidesJAClineTW
2006
The TAGteam DNA motif controls the timing of Drosophila
pre-blastoderm transcription.
Development
133
1967
1977
28. SubramanianATamayoPMoothaVKMukherjeeSEbertBLGilletteMAPaulovichAPomeroySLGolubTRLanderESMesirovJP
2005
Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles.
Proc Natl Acad Sci U S A
102
15545
15550
29. HarrisonDABinariRNahreiniTSGilmanMPerrimonN
1995
Activation of a Drosophila Janus kinase (JAK) causes
hematopoietic neoplasia and developmental defects.
Embo J
14
2857
2865
30. LuoHHanrattyWPDearolfCR
1995
An amino acid substitution in the Drosophila hopTum-l Jak kinase
causes leukemia-like hematopoietic defects.
Embo J
14
1412
1420
31. ShiSCalhounHCXiaFLiJLeLLiWX
2006
JAK signaling globally counteracts heterochromatic gene
silencing.
Nat Genet
38
1071
1076
32. SweitzerSMCalvoSKrausMHFinbloomDSLarnerAC
1995
Characterization of a Stat-like DNA binding activity in
Drosophila melanogaster.
J Biol Chem
270
16510
16513
33. ShiSLarsonKGuoDLimSJDuttaPYanSJLiWX
2008
Drosophila STAT is required for directly maintaining HP1
localization and heterochromatin stability.
Nat Cell Biol
10
489
496
34. PadgettRWSt JohnstonRDGelbartWM
1987
A transcript from a Drosophila pattern gene predicts a protein
homologous to the transforming growth factor-beta family.
Nature
325
81
84
35. St JohnstonRDGelbartWM
1987
Decapentaplegic transcripts are localized along the
dorsal-ventral axis of the Drosophila embryo.
Embo J
6
2785
2791
36. RayRPAroraKNusslein-VolhardCGelbartWM
1991
The control of cell fate along the dorsal-ventral axis of the
Drosophila embryo.
Development
113
35
54
37. WhartonKARayRPGelbartWM
1993
An activity gradient of decapentaplegic is necessary for the
specification of dorsal pattern elements in the Drosophila
embryo.
Development
117
807
822
38. HuangJDSchwyterDHShirokawaJMCoureyAJ
1993
The interplay between multiple enhancer and silencer elements
defines the pattern of decapentaplegic expression.
Genes Dev
7
694
704
39. Lopez-OnievaLFernandez-MinanAGonzalez-ReyesA
2008
Jak/Stat signalling in niche support cells regulates dpp
transcription to control germline stem cell maintenance in the Drosophila
ovary.
Development
135
533
540
40. WangLLiZCaiY
2008
The JAK/STAT pathway positively regulates DPP signaling in the
Drosophila germline stem cell niche.
J Cell Biol
180
721
728
41. HulskampMPfeifleCTautzD
1990
A morphogenetic gradient of hunchback protein organizes the
expression of the gap genes Kruppel and knirps in the early Drosophila
embryo.
Nature
346
577
580
42. PignoniFBaldarelliRMSteingrimssonEDiazRJPatapoutianAMerriamJRLengyelJA
1990
The Drosophila gene tailless is expressed at the embryonic
termini and is a member of the steroid receptor superfamily.
Cell
62
151
163
43. ParoushZWainwrightSMIsh-HorowiczD
1997
Torso signalling regulates terminal patterning in Drosophila by
antagonising Groucho-mediated repression.
Development
124
3827
3834
44. CarrollSBScottMP
1986
Zygotically active genes that affect the spatial expression of
the fushi tarazu segmentation gene during early Drosophila
embryogenesis.
Cell
45
113
126
45. SeftonLTimmerJRZhangYBerangerFClineTW
2000
An extracellular activator of the Drosophila JAK/STAT pathway is
a sex- determination signal element.
Nature
405
970
973
46. AvilaFWEricksonJW
2007
Drosophila JAK/STAT pathway reveals distinct initiation and
reinforcement steps in early transcription of Sxl.
Curr Biol
17
643
648
47. GilchristDADos SantosGFargoDCXieBGaoYLiLAdelmanK
2010
Pausing of RNA polymerase II disrupts DNA-specified nucleosome
organization to enable precise gene regulation.
Cell
143
540
551
48. ChouTBNollEPerrimonN
1993
Autosomal P[ovoD1] dominant female-sterile insertions
in Drosophila and their use in generating germ-line
chimeras.
Development
119
1359
1369
49. PignoniFSteingrimssonELengyelJA
1992
bicoid and the terminal system activate tailless expression in
the early Drosophila embryo.
Development
115
239
251
50. ChenHWChenXOhSWMarinissenMJGutkindJSHouSX
2002
mom identifies a receptor for the Drosophila JAK/STAT signal
transduction pathway and encodes a protein distantly related to the
mammalian cytokine receptor family.
Genes Dev
16
388
398
51. CapovillaMBrandtMBotasJ
1994
Direct regulation of decapentaplegic by Ultrabithorax and its
role in Drosophila midgut morphogenesis.
Cell
76
461
475
52. ImmergluckKLawrencePABienzM
1990
Induction across germ layers in Drosophila mediated by a genetic
cascade.
Cell
62
261
268
53. PanganibanGEReuterRScottMPHoffmannFM
1990
A Drosophila growth factor homolog, decapentaplegic, regulates
homeotic gene expression within and across germ layers during midgut
morphogenesis.
Development
110
1041
1050
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Nodal-Dependent Mesendoderm Specification Requires the Combinatorial Activities of FoxH1 and Eomesodermin
- SHINE Transcription Factors Act Redundantly to Pattern the Archetypal Surface of Arabidopsis Flower Organs
- STAT Is an Essential Activator of the Zygotic Genome in the Early Embryo
- A Nervous Origin for Fish Stripes