#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cooperativity of , , and in Malignant Breast Cancer Evolution


Breast cancers that are “triple-negative” for the clinical markers ESR1, PGR, and HER2 typically belong to the Basal-like molecular subtype. Defective Rb, p53, and Brca1 pathways are each associated with triple-negative and Basal-like subtypes. Our mouse genetic studies demonstrate that the combined inactivation of Rb and p53 pathways is sufficient to suppress the physiological cell death of mammary involution. Furthermore, concomitant inactivation of all three pathways in mammary epithelium has an additive effect on tumor latency and predisposes highly penetrant, metastatic adenocarcinomas. The tumors are poorly differentiated and have histologic features that are common among human Brca1-mutated tumors, including heterogeneous morphology, metaplasia, and necrosis. Gene expression analyses demonstrate that the tumors share attributes of both Basal-like and Claudin-low signatures, two molecular subtypes encompassed by the broader, triple-negative class defined by clinical markers.


Vyšlo v časopise: Cooperativity of , , and in Malignant Breast Cancer Evolution. PLoS Genet 8(11): e32767. doi:10.1371/journal.pgen.1003027
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003027

Souhrn

Breast cancers that are “triple-negative” for the clinical markers ESR1, PGR, and HER2 typically belong to the Basal-like molecular subtype. Defective Rb, p53, and Brca1 pathways are each associated with triple-negative and Basal-like subtypes. Our mouse genetic studies demonstrate that the combined inactivation of Rb and p53 pathways is sufficient to suppress the physiological cell death of mammary involution. Furthermore, concomitant inactivation of all three pathways in mammary epithelium has an additive effect on tumor latency and predisposes highly penetrant, metastatic adenocarcinomas. The tumors are poorly differentiated and have histologic features that are common among human Brca1-mutated tumors, including heterogeneous morphology, metaplasia, and necrosis. Gene expression analyses demonstrate that the tumors share attributes of both Basal-like and Claudin-low signatures, two molecular subtypes encompassed by the broader, triple-negative class defined by clinical markers.


Zdroje

1. CareyL, WinerE, VialeG, CameronD, GianniL (2010) Triple-negative breast cancer: Disease entity or title of convenience? Nat Rev Clin Oncol 7 (12)

683–692.

2. RakhaEA, El-SayedME, Reis-FilhoJ, EllisIO (2009) Patho-biological aspects of basal-like breast cancer. Breast Cancer Res Treat 113 (3)

411–422.

3. HerschkowitzJI, SiminK, WeigmanVJ, MikaelianI, UsaryJ, et al. (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8 (5)

R76.

4. PratA, ParkerJS, KarginovaO, FanC, LivasyC, et al. (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12 (5)

R68.

5. LiedtkeC, MazouniC, HessKR, AndreF, TordaiA, et al. (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26 (8)

1275–1281.

6. CareyLA, DeesEC, SawyerL, GattiL, MooreDT, et al. (2007) The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13 (8)

2329–2334.

7. HerschkowitzJI, HeX, FanC, PerouCM (2008) The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res 10 (5)

R75.

8. SorlieT, PerouCM, TibshiraniR, AasT, GeislerS, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98 (19)

10869–10874.

9. SorlieT, TibshiraniR, ParkerJ, HastieT, MarronJS, et al. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100 (14)

8418–8423.

10. Borresen-DaleAL (2003) TP53 and breast cancer. Hum Mutat 21 (3)

292–300.

11. SchuyerM, BernsEM (1999) Is TP53 dysfunction required for BRCA1-associated carcinogenesis? Mol Cell Endocrinol 155 (1–2)

143–152.

12. EstellerM, SilvaJM, DominguezG, BonillaF, Matias-GuiuX, et al. (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92 (7)

564–569.

13. WalshT, KingMC (2007) Ten genes for inherited breast cancer. Cancer Cell 11 (2)

103–105.

14. WelcshPL, LeeMK, Gonzalez-HernandezRM, BlackDJ, MahadevappaM, et al. (2002) BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci U S A 99 (11)

7560–7565.

15. LiuS, GinestierC, Charafe-JauffretE, FocoH, KleerCG, et al. (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A 105 (5)

1680–1685.

16. LimE, VaillantF, WuD, ForrestNC, PalB, et al. (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15 (8)

907–913.

17. DrostRM, JonkersJ (2009) Preclinical mouse models for BRCA1-associated breast cancer. Br J Cancer 101 (10)

1651–1657.

18. ChengL, ZhouZ, Flesken-NikitinA, ToshkovIA, WangW, et al. (2010) Rb inactivation accelerates neoplastic growth and substitutes for recurrent amplification of cIAP1, cIAP2 and Yap1 in sporadic mammary carcinoma associated with p53 deficiency. Oncogene 29 (42)

5700–5711.

19. SiminK, WuH, LuL, PinkelD, AlbertsonD, et al. (2004) pRb inactivation in mammary cells reveals common mechanisms for tumor initiation and progression in divergent epithelia. PLoS Biol 2: e22 doi:10.1371/journal.pcbi.0010022.

20. JiangZ, DengT, JonesR, LiH, HerschkowitzJI, et al. (2010) Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J Clin Invest 120 (9)

3296–3309.

21. LuX, YangC, YinC, Van DykeT, SiminKJ (2011) Apoptosis is the essential tumor suppression function of p53 during carcinoma progression. Mol Cancer Res

22. HolstegeH, van BeersE, VeldsA, LiuX, JoosseSA, et al. (2010) Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers. BMC Cancer 10: 455.

23. ScambiaG, LovergineS, MasciulloV (2006) RB family members as predictive and prognostic factors in human cancer. Oncogene 25 (38)

5302–5308.

24. ErtelA, DeanJL, RuiH, LiuC, WitkiewiczAK, et al. (2010) RB-pathway disruption in breast cancer: Differential association with disease subtypes, disease-specific prognosis and therapeutic response. Cell Cycle 9 (20)

4153–4163.

25. BiecheI, LidereauR (2000) Loss of heterozygosity at 13q14 correlates with RB1 gene underexpression in human breast cancer. Mol Carcinog 29 (3)

151–158.

26. ShahSP, RothA, GoyaR, OloumiA, HaG, et al. (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature

27. SiminK, HillR, SongY, ZhangQ, BashR, et al. (2005) Deciphering cancer complexities in genetically engineered mice. Cold Spring Harb Symp Quant Biol 70: 283–290.

28. WagnerKU, WallRJ, St-OngeL, GrussP, Wynshaw-BorisA, et al. (1997) Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 25 (21)

4323–4330.

29. Clark-KnowlesKV, SentermanMK, CollinsO, VanderhydenBC (2009) Conditional inactivation of Brca1, p53 and rb in mouse ovaries results in the development of leiomyosarcomas. PLoS ONE 4: e8534 doi:10.1371/journal.pone.0008534.

30. JonkersJ (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nature Genetics 29 (4)

418.

31. XiaoA, WuH, PandolfiPP, LouisDN, Van DykeT (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1 (2)

157–168.

32. JerryDJ, KuperwasserC, DowningSR, PinkasJ, HeC, et al. (1998) Delayed involution of the mammary epithelium in BALB/c-p53null mice. Oncogene 17 (18)

2305–2312.

33. CardiffRD (2010) The pathology of EMT in mouse mammary tumorigenesis. J Mammary Gland Biol Neoplasia 15 (2)

225–233.

34. SnijdersAM, FridlyandJ, MansDA, SegravesR, JainAN, et al. (2003) Shaping of tumor and drug-resistant genomes by instability and selection. Oncogene 22 (28)

4370–4379.

35. HanahanD, WeinbergRA (2011) Hallmarks of cancer: The next generation. Cell 144 (5)

646–674.

36. JonssonG, NaylorTL, Vallon-ChristerssonJ, StaafJ, HuangJ, et al. (2005) Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res 65 (17)

7612–7621.

37. FridlyandJ, SnijdersA, YlstraB, LiH, OlshenA, et al. (2006) Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6 (1)

96.

38. GauthierML, BermanHK, MillerC, KozakeiwiczK, ChewK, et al. (2007) Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell 12 (5)

479–491.

39. ProiaTA, KellerPJ, GuptaPB, KlebbaI, JonesAD, et al. (2011) Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 8 (2)

149–163.

40. CurtisC, ShahSP, ChinSF, TurashviliG, RuedaOM, et al. (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486 (7403)

346–352.

41. ChinK, DeVriesS, FridlyandJ, SpellmanPT, RoydasguptaR, et al. (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10 (6)

529–541.

42. HennessyBT, Gonzalez-AnguloAM, Stemke-HaleK, GilcreaseMZ, KrishnamurthyS, et al. (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69 (10)

4116–4124.

43. TaubeJH, HerschkowitzJI, KomurovK, ZhouAY, GuptaS, et al. (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A 107 (35)

15449–15454.

44. LiuX, HolstegeH, van der GuldenH, Treur-MulderM, ZevenhovenJ, et al. (2007) Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci U S A 104 (29)

12111–12116.

45. LiZ, TognonCE, GodinhoFJ, YasaitisL, HockH, et al. (2007) ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell 12 (6)

542–558.

46. BenitoM, ParkerJ, DuQ, WuJ, XiangD, et al. (2004) Adjustment of systematic microarray data biases. Bioinformatics 20 (1)

105–114.

47. SnijdersAM, NowakNJ, HueyB, FridlyandJ, LawS, et al. (2005) Mapping segmental and sequence variations among laboratory mice using BAC array CGH. Genome Res 15 (2)

302–311.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#