#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Trps1 and Its Target Gene Regulate Epithelial Proliferation in the Developing Hair Follicle and Are Associated with Hypertrichosis


Hereditary hypertrichoses are a group of hair overgrowth syndromes that are extremely rare in humans. We have previously demonstrated that a position effect on TRPS1 is associated with hypertrichosis in humans and mice. To gain insight into the functional role of Trps1, we analyzed the late morphogenesis vibrissae phenotype of Trps1Δgt mutant mice, which is characterized by follicle degeneration after peg downgrowth has been initiated. We found that Trps1 directly represses expression of the hair follicle stem cell regulator Sox9 to control proliferation of the follicle epithelium. Furthermore, we identified a copy number variation upstream of SOX9 in a family with hypertrichosis that significantly decreases expression of the gene in the hair follicle, providing new insights into the long-range regulation of SOX9. Our findings uncover a novel transcriptional hierarchy that regulates epithelial proliferation in the developing hair follicle and contributes to the pathology of hypertrichosis.


Vyšlo v časopise: Trps1 and Its Target Gene Regulate Epithelial Proliferation in the Developing Hair Follicle and Are Associated with Hypertrichosis. PLoS Genet 8(11): e32767. doi:10.1371/journal.pgen.1003002
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003002

Souhrn

Hereditary hypertrichoses are a group of hair overgrowth syndromes that are extremely rare in humans. We have previously demonstrated that a position effect on TRPS1 is associated with hypertrichosis in humans and mice. To gain insight into the functional role of Trps1, we analyzed the late morphogenesis vibrissae phenotype of Trps1Δgt mutant mice, which is characterized by follicle degeneration after peg downgrowth has been initiated. We found that Trps1 directly represses expression of the hair follicle stem cell regulator Sox9 to control proliferation of the follicle epithelium. Furthermore, we identified a copy number variation upstream of SOX9 in a family with hypertrichosis that significantly decreases expression of the gene in the hair follicle, providing new insights into the long-range regulation of SOX9. Our findings uncover a novel transcriptional hierarchy that regulates epithelial proliferation in the developing hair follicle and contributes to the pathology of hypertrichosis.


Zdroje

1. Garcia-CruzD, FigueraLE, CantuJM (2002) Inherited hypertrichoses. Clin Genet 61: 321–329.

2. BeightonP (1970) Congenital hypertrichosis lanuginosa. Arch Dermatol 101: 669–672.

3. BaumeisterFA, EggerJ, SchildhauerMT, Stengel-RutkowskiS (1993) Ambras syndrome: delineation of a unique hypertrichosis universalis congenita and association with a balanced pericentric inversion (8) (p11.2; q22). Clin Genet 44: 121–128.

4. Macías-FloresMA, García-CruzD, RiveraH, Escobar-LujánM, Melendrez-VegaA, et al. (1984) A new form of hypertrichosis inherited as an X-linked dominant trait. Hum Genet 66: 66–70.

5. CanunS, Guevara-SanginesEG, Elvira-MoralesA, Sierra-Romero MdelC, Rodriguez-AsbunH (2003) Hypertrichosis terminalis, gingival hyperplasia, and a characteristic face: a new distinct entity. Am J Med Genet A 116A: 278–283.

6. FantauzzoKA, Tadin-StrappsM, YouY, MentzerSE, BaumeisterFA, et al. (2008) A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice. Hum Mol Genet 17: 3539–3551.

7. FantauzzoKA, BazziH, JahodaCA, ChristianoAM (2008) Dynamic expression of the zinc-finger transcription factor Trps1 during hair follicle morphogenesis and cycling. Gene Expr Patterns 8: 51–57.

8. MomeniP, GlöcknerG, SchmidtO, von HoltumD, AlbrechtB, et al. (2000) Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat Genet 24: 71–74.

9. LϋdeckeHJ, SchaperJ, MeineckeP, MomeniP, GrossS, et al. (2001) Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types I and III. Am J Hum Genet 68: 81–91.

10. GiedionA, BurdeaM, FruchterZ, MeloniT, TroscV (1973) Autosomal-dominant transmission of the tricho-rhino-phalangeal syndrome. Report of 4 unrelated families, review of 60 cases. Helv Paediatr Acta 28: 249–259.

11. MalikTH, Von StechowD, BronsonRT, ShivdasaniRA (2002) Deletion of the GATA domain of TRPS1 causes an absence of facial hair and provides new insights into the bone disorder in inherited tricho-rhino-phalangeal syndromes. Mol Cell Biol 22: 8592–8600.

12. SuemotoH, MuragakiY, NishiokaK, SatoM, OoshimaA, et al. (2007) Trps1 regulates proliferation and apoptosis of chondrocytes through Stat3 signaling. Dev Biol 312: 572–581.

13. FantauzzoKA, ChristianoAM (2012) Trps1 activates a network of secreted Wnt inhibitors and transcription factors crucial to vibrissa follicle morphogenesis. Development 139: 203–214.

14. SarriC, GyftodimouJ, AvramopoulosD, GrigoriadouM, PedersenW, et al. (1997) Partial trisomy 17q22-qter and partial monosomy Xq27-qter in a girl with a de novo unbalanced translocation due to a postzygotic error: case report and review of the literature on partial trisomy 17qter. Am J Med Genet 70: 87–94.

15. SunM, LiN, DongW, ChenZ, LiuQ, et al. (2009) Copy-number mutations on chromosome 17q24.2-q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. Am J Hum Genet 84: 807–813.

16. NowakJA, PolakL, PasolliHA, FuchsE (2008) Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3: 33–43.

17. VidalVP, ChaboissierMC, LϋtzkendorfS, CotsarelisG, MillP, et al. (2005) Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol 15: 1340–1351.

18. MalikTH, ShoichetSA, LathamP, KrollTG, PetersLL, et al. (2001) Transcriptional repression and developmental functions of the atypical vertebrate GATA protein TRPS1. EMBO J 20: 1715–1725.

19. ChangGT, van den BemdGJ, JhamaiM, BrinkmannAO (2002) Structure and function of GC79/TRPS1, a novel androgen-repressible apoptosis gene. Apoptosis 7: 13–21.

20. ZengL, KempfH, MurtaughLC, SatoME, LassarAB (2002) Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev 16: 1990–2005.

21. TavellaS, BiticchiR, SchitoA, MininaE, Di MartinoD, et al. (2004) Targeted expression of SHH affects chondrocyte differentiation, growth plate organization, and Sox9 expression. J Bone Miner Res 19: 1678–1688.

22. ParkJ, ZhangJJ, MoroA, KushidaM, WegnerM, et al. (2010) Regulation of Sox9 by Sonic Hedgehog (Shh) is essential for patterning and formation of tracheal cartilage. Dev Dyn 239: 514–526.

23. Bien-WillnerGA, StankiewiczP, LupskiJR (2007) SOX9cre1, a cis-acting regulatory element located 1.1 Mb upstream of SOX9, mediates its enhancement through the SHH pathway. Hum Mol Genet 16: 1143–1156.

24. MillP, MoR, FuH, GrachtchoukM, KimPC, et al. (2003) Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 17: 282–294.

25. KinzlerKW, VogelsteinB (1990) The GLI gene encodes a nuclear protein which binds specific sequence in the human genome. Mol Cell Biol 10: 634–642.

26. HallikasO, PalinK, SinjushinaN, RautiainenR, PartanenJ, et al. (2006) Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124: 47–59.

27. St-JacquesB, DassuleHR, KaravanovaI, BotchkarevVA, LiJ, et al. (1998) Sonic hedgehog signaling is essential for hair development. Curr Biol 8: 1058–1068.

28. ChiangC, SwanRZ, GrachtchoukM, BolingerM, LitingtungY, et al. (1999) Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 205: 1–9.

29. KarlssonL, BondjersC, BetsholtzC (1999) Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development 126: 2611–2621.

30. SatoN, LeopoldPL, CrystalRG (1999) Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J Clin Invest 104: 855–864.

31. WangLC, LiuZY, GambardellaL, DelacourA, ShapiroR, et al. (2000) Regular articles: conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J Invest Dermatol 114: 901–908.

32. OroAE, HigginsKM, HuZ, BonifasJM, EpsteinEHJr, et al. (1997) Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276: 817–821.

33. DahmaneN, LeeJ, RobinsP, HellerP, Ruiz i AltabaA (1997) Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389: 876–881.

34. XieJ, MuroneM, LuohSM, RyanA, GuQ, et al. (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391: 90–92.

35. NilssonM, UndènAB, KrauseD, MalmqwistU, RazaK, et al. (2000) Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci U S A 97: 3438–3443.

36. GrachtchoukM, MoR, YuS, ZhangX, SasakiH, et al. (2000) Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 24: 216–217.

37. VidalVP, OrtonneN, SchedlA (2008) SOX9 expression is a general marker of basal cell carcinoma and adnexal-related neoplasms. J Cutan Pathol 35: 373–379.

38. HardyMH (1992) The secret life of the hair follicle. Trends Genet 8: 55–61.

39. CotsarelisG, SunTT, LavkerRM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61: 1329–1337.

40. Gritli-LindeA, HallbergK, HarfeBD, ReyahiA, Kannius-JansonM, et al. (2007) Abnormal hair development and apparent follicular transformation to mammary gland in the absence of hedgehog signaling. Dev Cell 12: 99–112.

41. VelagaletiGV, Bien-WillnerGA, NorthupJK, LockhartLH, HawkinsJC, et al. (2005) Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet 76: 652–662.

42. LeipoldtM, ErdelM, Bien-WillnerGA, SmykM, TheurlM, et al. (2007) Two novel translocation breakpoints upstream of SOX9 define borders of the proximal and distal breakpoint cluster region in campomelic dysplasia. Clin Genet 71: 67–75.

43. MacholdR, HayashiS, RutlinM, MuzumdarMD, NeryS, et al. (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39: 937–950.

44. LewisPM, Gritli-LindeA, SmeyneR, KottmannA, McMahonAP (2004) Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol 270: 393–410.

45. HarfeBD, ScherzPJ, NissimS, TianH, McMahonAP, et al. (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118: 517–528.

46. IidaM, IharaS, MatsuzakiT (2007) Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Dev Growth Differ 49: 185–195.

47. NoguchiK, IshiiS, ShimizuT (2003) Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 278: 25600–25606.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#