Mutations in the Transcription Elongation Factor SPT5 Disrupt a Reporter for Dosage Compensation in Drosophila
In Drosophila, the MSL (Male Specific Lethal) complex up regulates transcription of active genes on the single male X-chromosome to equalize gene expression between sexes. One model argues that the MSL complex acts upon the elongation step of transcription rather than initiation. In an unbiased forward genetic screen for new factors required for dosage compensation, we found that mutations in the universally conserved transcription elongation factor Spt5 lower MSL complex dependent expression from the miniwhite reporter gene in vivo. We show that SPT5 interacts directly with MSL1 in vitro and is required downstream of MSL complex recruitment, providing the first mechanistic data corroborating the elongation model of dosage compensation.
Vyšlo v časopise:
Mutations in the Transcription Elongation Factor SPT5 Disrupt a Reporter for Dosage Compensation in Drosophila. PLoS Genet 8(11): e32767. doi:10.1371/journal.pgen.1003073
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003073
Souhrn
In Drosophila, the MSL (Male Specific Lethal) complex up regulates transcription of active genes on the single male X-chromosome to equalize gene expression between sexes. One model argues that the MSL complex acts upon the elongation step of transcription rather than initiation. In an unbiased forward genetic screen for new factors required for dosage compensation, we found that mutations in the universally conserved transcription elongation factor Spt5 lower MSL complex dependent expression from the miniwhite reporter gene in vivo. We show that SPT5 interacts directly with MSL1 in vitro and is required downstream of MSL complex recruitment, providing the first mechanistic data corroborating the elongation model of dosage compensation.
Zdroje
1. ConradT, AkhtarA (2012) Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet 13: 123–134 doi:10.1038/nrg3124.
2. GelbartM, KurodaM (2009) Drosophila dosage compensation: a complex voyage to the X chromosome. Development 136: 1399–1410.
3. WuL, ZeeB, WangY, GarciaB, DouY (2011) The RING Finger Protein MSL2 in the MOF Complex Is an E3 Ubiquitin Ligase for H2B K34 and Is Involved in Crosstalk with H3 K4 and K79 Methylation. Mol Cell 43: 132–144 doi:10.1016/j.molcel.2011.05.015.
4. KimD, BlusB, ChandraV, HuangP, RastinejadF, KhorasanizadehS (2010) Corecognition of DNA and a methylated histone tail by the MSL3 chromodomain. Nat Struct Mol Biol 17: 1027–1029.
5. SmithE, AllisC, LucchesiJ (2001) Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J Biol Chem 276: 31483–31486 doi:10.1074/jbc.C100351200.
6. LegubeG, McWeeneyS, LercherM, AkhtarA (2006) X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. Genes Dev 20: 871–883 doi:10.1101/gad.377506.
7. AlekseyenkoAA, LarschanE, LaiW, ParkP, KurodaM (2006) High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev 20: 848–857 doi:10.1101/gad.1400206.
8. GilfillanGD, StraubT, de WitE, GreilF, LammR, et al. (2006) Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev 20: 858–870 doi:10.1101/gad.1399406.
9. LarschanE, BishopE, KharchenkoP, CoreL, LisJ, et al. (2011) X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471: 115–118 doi:10.1038/nature09757.
10. ConradT, CavalliF, VaquerizasJ, LuscombeN, AkhtarA (2012) Drosophila dosage compensation involves enhanced Pol II recruitment to male X-linked promoters. Science 337: 742–746.
11. Shogren-KnaakM, IshiiH, SunJ-M, PazinMJ, DavieJR, et al. (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311: 844–847 doi:10.1126/science.1124000.
12. KelleyR, KurodaM (2003) The Drosophila roX1 RNA gene can overcome silent chromatin by recruiting the male-specific lethal dosage compensation complex. Genetics 164: 565–574.
13. PrabhakaranM, KelleyR (2010) A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype. BMC Biol 8: 80 doi:10.1186/1741-7007-8-80.
14. ZhaiR, HiesingerP, KohT, VerstrekenP, SchulzeK, et al. (2003) Mapping Drosophila mutations with molecularly defined P element insertions. Proc Natl Acad Sci U S A 100: 10860–10865.
15. MahoneyM, ParksA, RuddyD, TiongS, EsengilH, et al. (2006) Presenilin-based genetic screens in Drosophila melanogaster identify novel Notch pathway modifiers. Genetics 172: 2309–2324.
16. AndrulisED, GuzmaE, DoP, WernerJ, LisJT (2000) High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev 2635–2649 doi:10.1101/gad.844200.Krumm.
17. O'HareK, AlleyMRK, CullingfordTE, DriverA, SandersonMJ (1991) DNA sequence of the Doc retroposon in the white-one mutant of Drosophila melanogaster and of secondary insertions in the phenotypically altered derivatives white-honey and white-eosin. Mol Gen Genet 225: 17–24.
18. LevisR, BinghamP, RubinG (1982) Physical map of the white locus of Drosophila melanogaster. Proc Natl Acad Sci U S A 79: 564–568.
19. MellerVH, RattnerBP (2002) The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J 21: 1084–1091 doi:10.1093/emboj/21.5.1084.
20. KelleyR, LeeO-K, ShimY-K (2008) Transcription rate of noncoding roX1 RNA controls local spreading of the Drosophila MSL chromatin remodeling complex. Mech Dev 125: 1009–1019 doi:10.1016/j.mod.2008.08.003.
21. SmithE, WinterB, EissenbergJ, ShilatifardA (2008) Regulation of the transcriptional activity of poised RNA polymerase II by the elongation factor ELL. Proc Natl Acad Sci U S A 105: 8575–8579.
22. KelleyRL, SolovyevaI, LymanLM, RichmanR, SolovyevV, et al. (1995) Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81: 867–877.
23. GilchristDA, Dos SantosG, FargoDC, XieB, GaoY, et al. (2010) Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 143: 540–551 doi:10.1016/j.cell.2010.10.004.
24. KaplanCD, MorrisJR, WuC, WinstonF (2000) Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev 14: 2623–2634 doi:10.1101/gad.831900.tion.
25. WadaT, TakagiT, YamaguchiY, WatanabeD, HandaH (1998) Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J 15: 7395–7403.
26. MissraA, GilmourDS (2010) Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc Natl Acad Sci U S A 107: 11301–11306 doi:10.1073/pnas.1000681107.
27. WadaT, TakagiT, YamaguchiY, FerdousA, ImaiT, et al. (1998) DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12: 343–356.
28. RahlP, LinC, SeilaA, FlynnR, McCuineS, et al. (2010) c-Myc Regulates Transcriptional Pause Release. Cell 141: 432–445.
29. LarschanE, AlekseyenkoA, GortchakovA, PengS, LiB, et al. (2007) MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell 28: 121–133 doi:10.1016/j.molcel.2007.08.011.
30. VakocC, SachdevaM, WangH, BlobelG (2006) Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 26: 9185–9195.
31. MendjanS, TaipaleM, KindJ, HolzH, GebhardtP, et al. (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21: 811–823 doi:10.1016/j.molcel.2006.02.007.
32. PrestelM, FellerC, StraubTHM, BeckerP (2010) The Activation Potential of MOF Is Constrained for Dosage Compensation. Mol Cell 38: 815–826.
33. Martinez-RucoboFW, SainsburyS, CheungACM, CramerP (2011) Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J 30: 1302–1310 doi:10.1038/emboj.2011.64.
34. HirtreiterA, DamsmaGE, CheungACM, KloseD, GrohmannD, et al. (2010) Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res 38: 4040–4051 doi:10.1093/nar/gkq135.
35. SteinerT, KaiserJ, MarinkoviçS, HuberR, WahlM (2002) Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities. EMBO J 21: 4641–4653.
36. GanM, MoebusS, EggertH, SaumweberH (2011) The Chriz–Z4 complex recruits JIL-1 to polytene chromosomes,a requirement for interband-specific phosphorylation of H3S10. J Biosci 36: 425–438 doi:10.1007/s12038-011-9089-y.
37. RathU, DingY, DengH, QiH, BaoX, et al. (2006) The chromodomain protein, Chromator, interacts with JIL-1 kinase and regulates the structure of Drosophila polytene chromosomes. J Cell Sci 119: 2332–2341 doi:10.1242/jcs.02960.
38. MaloneE, FasslerJ, WinstonF (1993) Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae. Mol Gen Genet 237: 449–459.
39. SpradlingA, SternaD, BeatonbA, RehmbJ, LavertyT, et al. (1999) The Berkeley Drosophila Genome Project Gene Disruption Project: Single P-Element Insertions Mutating 25% of Vital Drosophila Genes. Genetics 153: 135–177.
40. HartzogG, WadaT, HandaH, WinstonF (1998) Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev 12: 357–369.
41. KimD, InukaiN, YamadaT, FuruyaA, SatoH, et al. (2003) Structure-function analysis of human Spt4: evidence that hSpt4 and hSpt5 exert their roles in transcriptional elongation as parts of the DSIF complex. Genes Cells 8: 371–378.
42. flybase (n.d.).
43. GuruharshaK, RualJ, ZhaiB, MintserisJ, VaidyaP, et al. (2011) A protein complex network of Drosophila melanogaster. Cell 147: 690–703.
44. KomoriT, InukaiN, YamadaT, YamaguchiY, HandaH (2009) Role of human transcription elongation factor DSIF in the suppression of senescence and apoptosis. Genes Cells 14: 343–354.
45. IvanovD, KwakYT, GuoJ, GaynorRB (2000) Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol Cell Biol 20: 2970–2983.
46. O'BrienT, LisJ (1991) RNA polymerase II pauses at the 5′ end of the transcriptionally induced Drosophila hsp70 gene. Mol Cell Biol 11: 5285–5290.
47. NechaevS, FargoD, dos SantosG, LiuL, GaoY, et al. (2010) Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327: 335–338.
48. GelbartME, LarschanE, PengS, ParkPJ, KurodaMI (2009) Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat Struct Mol Biol 16: 825–832 doi:10.1038/nsmb.1644.
49. ArdehaliMB, YaoJ, AdelmanK, FudaNJ, PeteschSJ, et al. (2009) Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J 28: 1067–1077 doi:10.1038/emboj.2009.56.
50. BortvinA, WinstonF (1996) Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272: 1473–1476.
51. JinY, WangY, JohansenJ, JohansenKM (2000) JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specific lethal (MSL) dosage compensation complex. J Cell Biol 149: 1005–1010.
52. RegnardC, StraubT, MitterwegerA, DahlsveenI, FabianV, et al. (2011) Global analysis of the relationship between JIL-1 kinase and transcription. PLoS Genet 7: e1001327 doi:10.1371/journal.pgen.1001327.
53. DrouinS, LaraméeL, JacquesP-É, ForestA, BergeronM, et al. (2010) DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet 6: e1001173 doi:10.1371/journal.pgen.1001173.
54. CarrozzaMJ, LiB, FlorensL, SuganumaT, SwansonSK, et al. (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123: 581–592 doi:10.1016/j.cell.2005.10.023.
55. EspinásM, CanudasS, FantiL, PimpinelliS, CasanovaJ, et al. (2000) The GAGA factor of Drosophila interacts with SAP18, a Sin3-associated polypeptide. EMBO Rep 1: 253–259.
56. LarschanE, SorucoM, LeeO, PengS, BishopE, et al. (2012) Identification of Chromatin-Associated Regulators of MSL Complex Targeting in Drosophila Dosage Compensation. PLoS Genet 8: e1002830 doi:10.1371/journal.pgen.1002830.
57. KindJ, VaquerizasJM, GebhardtP, GentzelM, LuscombeNM, et al. (2008) Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133: 813–828 doi:10.1016/j.cell.2008.04.036.
58. TaipaleM, ReaS, RichterK, VilarA, LichterP, et al. (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25: 6798–6810 doi:10.1128/MCB.25.15.6798.
59. SmithE, CayrouC, HuangR, LaneW, CoJ, et al. (2005) A Human Protein Complex Homologous to the Drosophila MSL Complex Is Responsible for the Majority of Histone H4 Acetylation at Lysine 16. Mol Cell Biol 25: 9175–9188 doi:10.1128/MCB.25.21.9175.
60. LiX, WuL, CorsaC, KunkelS, DouY (2009) Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell 36: 290–301.
61. KelleyRL, MellerVH, GordadzePR, RomanG, DavisRL, et al. (1999) Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98: 513–522.
62. BaiX, AlekseyenkoAa, KurodaMI (2004) Sequence-specific targeting of MSL complex regulates transcription of the roX RNA genes. EMBO J 23: 2853–2861 doi:10.1038/sj.emboj.7600299.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 11
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Mechanisms Employed by to Prevent Ribonucleotide Incorporation into Genomic DNA by Pol V
- Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data
- Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival
- Histone Methyltransferases MES-4 and MET-1 Promote Meiotic Checkpoint Activation in