A Genome-Wide Screen for Genetic Variants That Modify the Recruitment of REST to Its Target Genes
Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies—various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation—these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP–seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism.
Vyšlo v časopise:
A Genome-Wide Screen for Genetic Variants That Modify the Recruitment of REST to Its Target Genes. PLoS Genet 8(4): e32767. doi:10.1371/journal.pgen.1002624
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002624
Souhrn
Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies—various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation—these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP–seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism.
Zdroje
1. IoannidisJPAThomasGDalyMJ 2009 Validating, augmenting and refining genome-wide association signals. Nat Rev Genet 10 318 329
2. HindorffLASethupathyPJunkinsHARamosEMMehtaJP 2009 Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences 106 9362 9367
3. ChorleyBNWangXCampbellMRPittmanGSNoureddineMA 2008 Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: Current and developing technologies. Mutation Research/Reviews in Mutation Research 659 147 157
4. StrangerBENicaACForrestMSDimasABirdCP 2007 Population genomics of human gene expression. Nat Genet 39 1217 1224
5. MenendezDKrysiakOIngaAKrysiakBResnickMA 2006 A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network. Proceedings of the National Academy of Sciences of the United States of America 103 1406 1411
6. TokuhiroSYamadaRChangXSuzukiAKochiY 2003 An intronic snp in a runx1 binding site of slc22a4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35 341 348
7. De GobbiMViprakasitVHughesJRFisherCBuckleVJ 2006 A Regulatory SNP Causes a Human Genetic Disease by Creating a New Transcriptional Promoter. Science 312 1215 1217
8. WangXTomsoDJChorleyBNChoHYCheungVG 2007 Identification of polymorphic antioxidant response elements in the human genome. Hum Mol Genet 16 1188 1200
9. AmeurARada-IglesiasAKomorowskiJWadeliusC 2009 Identification of candidate regulatory SNPs by combination of transcription-factor-binding site prediction, SNP genotyping and haploChIP. Nucl Acids Res 37 e85
10. JohnsonDSMortazaviAMyersRMWoldB 2007 Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science 316 1497 1502
11. JohnsonRTehCHlKunarsoGWongKYSrinivasanG 2008 Rest regulates distinct transcriptional networks in embryonic and neural stem cells. PLoS Biol 6 e256 doi:10.1371/journal.pbio.0060256
12. CheongABinghamAJLiJKumarBSukumarP 2005 Downregulated REST Transcription Factor Is a Switch Enabling Critical Potassium Channel Expression and Cell Proliferation. Mol Cell 20 45 52
13. WestbrookTFMartinESSchlabachMRLengYLiangAC 2005 A genetic screen for candidate tumor suppressors identifies rest. Cell 121 837 848
14. LawingerPVenugopalRGuoZSImmaneniASenguptaD 2000 The neuronal repressor rest/nrsf is an essential regulator in medulloblastoma cells. Nat Med 6 826 831
15. KuwaharaKSaitoYTakanoMAraiYYasunoS 2003 NRSF regulates the fetal cardiac gene program and maintains normal cardiac structure and function. EMBO J 22 6310 6321
16. CalderoneAJoverTNohKmTanakaHYokotaH 2003 Ischemic Insults Derepress the Gene Silencer REST in Neurons Destined to Die. J Neurosci 23 2112 2121
17. ZuccatoCTartariMCrottiAGoffredoDValenzaM 2003 Huntingtin interacts with rest/nrsf to modulate the transcription of nrse-controlled neuronal genes. Nat Genet 35 76 83
18. LeoneSMuttiCKazantsevASturleseMMoroS 2008 Sar and qsar study on 2-aminothiazole derivatives, modulators of transcriptional repression in huntington's disease. Bioorg Med Chem 16 5695 5703
19. JohnsonRGamblinRJOoiLBruceAWDonaldsonIJ 2006 Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucl Acids Res 34 3862 3877
20. JohnsonRSamuelJNgCKLJauchRStantonLW 2009 Evolution of the Vertebrate Gene Regulatory Network Controlled by the Transcriptional Repressor REST. Mol Biol Evol 26 1491 1507
21. BruceAWLpez-ContrerasAJFlicekPDownTADhamiP 2009 Functional diversity for rest (nrsf) is defined by in vivo binding affinity hierarchies at the dna sequence level. Genome Research 19 994 1005
22. WangZShenDParsonsDWBardelliASagerJ 2004 Mutational Analysis of the Tyrosine Phosphatome in Colorectal Cancers. Science 304 1164 1166
23. WagonerMPGunsalusKTWSchoenikeBRichardsonALFriedlA 2010 The transcription factor rest is lost in aggressive breast cancer. PLoS Genet 6 e1000979 doi:10.1371/journal.pgen.1000979
24. von HippelPBergO 1986 On the specificity of protein-DNA interactions. Nucl Acids Res 83 1608 1612
25. The ENCODE Project Consortium 2011 A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9 e1001046 doi:10.1371/journal.pbio.1001046
26. ConsortiumTGP 2010 A map of human genome variation from population-scale sequencing. Nature 467 10611073
27. MankeTHeinigMVingronM 2010 Quantifying the effect of sequence variation on regulatory interactions. Human Mutation 31 477 483
28. NoureddineMAMenendezDCampbellMRBandeleOJHorvathMM 2009 Probing the functional impact of sequence variation on p53-dna interactions using a novel microsphere assay for protein-dna binding with human cell extracts. PLoS Genet 5 e1000462 doi:10.1371/journal.pgen.1000462
29. KasowskiMGrubertFHeffelfingerCHariharanMAsabereA 2010 Variation in Transcription Factor Binding Among Humans. Science 328 232 235
30. OoiLWoodIC 2007 Chromatin crosstalk in development and disease: lessons from rest. Nat Rev Genet 8 544 554
31. BuckleyNJJohnsonRZuccatoCBithellACattaneoE 2010 The role of rest in transcriptional and epigenetic dysregulation in huntington's disease. Neurobiology of Disease 39 28 39
32. Newton-ChehCLarsonMGVasanRSLevyDBlochKD 2009 Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet 41 348 353
33. VeprintsevDBFershtAR 2008 Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA. Nucl Acids Res 36 1589 1598
34. GiardineBRiemerCHardisonRCBurhansRElnitskiL 2005 Galaxy: A platform for interactive large-scale genome analysis. Genome Research 15 1451 1455
35. BabuRajendranNPalasingamPNarasimhanKSunWPrabhakarS 2010 Structure of smad1 mh1/dna complex reveals distinctive rearrangements of bmp and tgf- effectors. Nucleic Acids Research 39 8213 8222
36. ZhangYLiuTMeyerCAEeckhouteJJohnsonDS 2008 Model-based analysis of chip-seq (macs). Genome Biology 9 R137
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 4
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- A Coordinated Interdependent Protein Circuitry Stabilizes the Kinetochore Ensemble to Protect CENP-A in the Human Pathogenic Yeast
- Coordinate Regulation of Lipid Metabolism by Novel Nuclear Receptor Partnerships
- Defective Membrane Remodeling in Neuromuscular Diseases: Insights from Animal Models
- Formation of Rigid, Non-Flight Forewings (Elytra) of a Beetle Requires Two Major Cuticular Proteins