The Functions of Mediator in Support a Role in Shaping Species-Specific Gene Expression
The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species.
Vyšlo v časopise:
The Functions of Mediator in Support a Role in Shaping Species-Specific Gene Expression. PLoS Genet 8(4): e32767. doi:10.1371/journal.pgen.1002613
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002613
Souhrn
The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species.
Zdroje
1. KimYJBjorklundSLiYSayreMHKornbergRD 1994 A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77 599 608
2. ConawayRCConawayJW 2011 Function and regulation of the Mediator complex. Curr Opin Genet Dev 21 225 230
3. DotsonMRYuanCXRoederRGMyersLCGustafssonCM 2000 Structural organization of yeast and mammalian mediator complexes. Proc Natl Acad Sci U S A 97 14307 14310
4. DavisJATakagiYKornbergRDAsturiasFA 2002 Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol Cell 10 409 415
5. GuglielmiBvan BerkumNLKlapholzBBijmaTBoubeM 2004 A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res 32 5379 5391
6. CaiGImasakiTTakagiYAsturiasFJ 2009 Mediator structural conservation and implications for the regulation mechanism. Structure 17 559 567
7. van de PeppelJKettelarijNvan BakelHKockelkornTTvan LeenenD 2005 Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol Cell 19 511 522
8. CollinsSRMillerKMMaasNLRoguevAFillinghamJ 2007 Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446 806 810
9. HolstegeFCJenningsEGWyrickJJLeeTIHengartnerCJ 1998 Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95 717 728
10. BorggrefeTDavisRErdjument-BromageHTempstPKornbergRD 2002 A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. J Biol Chem 277 44202 44207
11. MoXKowenz-LeutzEXuHLeutzA 2004 Ras induces mediator complex exchange on C/EBP beta. Mol Cell 13 241 250
12. MalikSRoederRG 2010 The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11 761 772
13. BjorklundSGustafssonCM 2005 The yeast Mediator complex and its regulation. Trends Biochem Sci 30 240 244
14. MittlerGKremmerETimmersHTMeisterernstM 2001 Novel critical role of a human Mediator complex for basal RNA polymerase II transcription. EMBO Rep 2 808 813
15. BaekHJMalikSQinJRoederRG 2002 Requirement of TRAP/mediator for both activator-independent and activator-dependent transcription in conjunction with TFIID-associated TAF(II)s. Mol Cell Biol 22 2842 2852
16. WangGBalamotisMAStevensJLYamaguchiYHandaH 2005 Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol Cell 17 683 694
17. MalikSBarreroMJJonesT 2007 Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator. Proc Natl Acad Sci U S A 104 6182 6187
18. GuglielmiBSoutourinaJEsnaultCWernerM 2007 TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo. Proc Natl Acad Sci U S A 104 16062 16067
19. DonnerAJEbmeierCCTaatjesDJEspinosaJM 2010 CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 17 194 201
20. YudkovskyNRanishJAHahnS 2000 A transcription reinitiation intermediate that is stabilized by activator. Nature 408 225 229
21. BlackJCChoiJELombardoSRCareyM 2006 A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell 23 809 818
22. DingNZhouHEstevePOChinHGKimS 2008 Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell 31 347 359
23. LenstraTLBenschopJJKimTSchulzeJMBrabersNA 2011 The specificity and topology of chromatin interaction pathways in yeast. Mol Cell 42 536 549
24. ZhuXLiuBCarlstenJOBeveJNystromT 2011 Mediator influences telomeric silencing and cellular life span. Mol Cell Biol 31 2413 2421
25. ChangYWHowardSCHermanPK 2004 The Ras/PKA signaling pathway directly targets the Srb9 protein, a component of the general RNA polymerase II transcription apparatus. Mol Cell 15 107 116
26. HallbergMPolozkovGVHuGZBeveJGustafssonCM 2004 Site-specific Srb10-dependent phosphorylation of the yeast Mediator subunit Med2 regulates gene expression from the 2-microm plasmid. Proc Natl Acad Sci U S A 101 3370 3375
27. BourbonHM 2008 Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res 36 3993 4008
28. LinderTRasmussenNNSamuelsenCOChatzidakiEBaraznenokV 2008 Two conserved modules of Schizosaccharomyces pombe Mediator regulate distinct cellular pathways. Nucleic Acids Res 36 2489 2504
29. ChangYWHowardSCBudovskayaYVRineJHermanPK 2001 The rye mutants identify a role for Ssn/Srb proteins of the RNA polymerase II holoenzyme during stationary phase entry in Saccharomyces cerevisiae. Genetics 157 17 26
30. WheelerRTKombeDAgarwalaSDFinkGR 2008 Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog 4 e1000227 doi:10.1371/journal.ppat.1000227
31. WangLILinYSLiuKHJongAYShenWC 2011 Cryptococcus neoformans Mediator protein Ssn8 negatively regulates diverse physiological processes and is required for virulence. PLoS ONE 6 e19162 doi:10.1371/journal.pone.0019162
32. ShimWBWoloshukCP 2001 Regulation of fumonisin B(1) biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl Environ Microbiol 67 1607 1612
33. BluhmBHWoloshukCP 2006 Fck1, a C-type cyclin-dependent kinase, interacts with Fcc1 to regulate development and secondary metabolism in Fusarium verticillioides. Fungal Genet Biol 43 146 154
34. ZhouXHeyerCChoiYEMehrabiRXuJR 2010 The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Fungal Genet Biol 47 143 151
35. BlankenshipJRFanningSHamakerJJMitchellAP 2010 An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog 6 e1000752 doi:10.1371/journal.ppat.1000752
36. NelsonCGotoSLundKHungWSadowskiI 2003 Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature 421 187 190
37. CooperKFMalloryMJStrichR 1999 Oxidative stress-induced destruction of the yeast C-type cyclin Ume3p requires phosphatidylinositol-specific phospholipase C and the 26S proteasome. Mol Cell Biol 19 3338 3348
38. ThakurJKArthanariHYangFPanSJFanX 2008 A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452 604 609
39. PaulSSchmidtJAMoye-RowleyWS 2011 Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot Cell 10 187 197
40. FichtnerLSchulzeFBrausGH 2007 Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 66 1276 1289
41. ArbourMEppEHoguesHSellamALacroixC 2009 Widespread occurrence of chromosomal aneuploidy following the routine production of Candida albicans mutants. FEMS Yeast Res 9 1070 1077
42. MiklosISzilagyiZWattSZilahiEBattaG 2008 Genomic expression patterns in cell separation mutants of Schizosaccharomyces pombe defective in the genes sep10 (+) and sep15 (+) coding for the Mediator subunits Med31 and Med8. Mol Genet Genomics 279 225 238
43. KoschubsTSeizlMLariviereLKurthFBaumliS 2009 Identification, structure, and functional requirement of the Mediator submodule Med7N/31. EMBO J 28 69 80
44. SubramanianATamayoPMoothaVKMukherjeeSEbertBL 2005 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102 15545 15550
45. MoothaVKLindgrenCMErikssonKFSubramanianASihagS 2003 PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34 267 273
46. StarkCBreitkreutzBJRegulyTBoucherLBreitkreutzA 2006 BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34 D535 539
47. MarcilAGadouryCAshJZhangJNantelA 2008 Analysis of PRA1 and its relationship to Candida albicans-macrophage interactions. Infect Immun 76 4345 4358
48. SpieringMJMoranGPChauvelMMaccallumDMHigginsJ 2010 Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model. Eukaryot Cell 9 251 265
49. FradinCDe GrootPMacCallumDSchallerMKlisF 2005 Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56 397 415
50. KadoshDJohnsonAD 2005 Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16 2903 2912
51. NantelADignardDBachewichCHarcusDMarcilA 2002 Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13 3452 3465
52. HarcusDNantelAMarcilARigbyTWhitewayM 2004 Transcription profiling of cyclic AMP signaling in Candida albicans. Mol Biol Cell 15 4490 4499
53. BachewichCNantelAWhitewayM 2005 Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans. Mol Microbiol 57 942 959
54. CotePHoguesHWhitewayM 2009 Transcriptional analysis of the Candida albicans cell cycle. Mol Biol Cell 20 3363 3373
55. EnjalbertBNantelAWhitewayM 2003 Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14 1460 1467
56. ButlerGRasmussenMDLinMFSantosMASakthikumarS 2009 Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459 657 662
57. MulhernSMLogueMEButlerG 2006 Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. Eukaryot Cell 5 2001 2013
58. HoyerLLGreenCBOhSHZhaoX 2008 Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family–a sticky pursuit. Med Mycol 46 1 15
59. ArgimonSWishartJALengRMacaskillSMavorA 2007 Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot Cell 6 682 692
60. KimSWolyniakMJStaabJFSundstromP 2007 A 368-base-pair cis-acting HWP1 promoter region, HCR, of Candida albicans confers hypha-specific gene regulation and binds architectural transcription factors Nhp6 and Gcf1p. Eukaryot Cell 6 693 709
61. HeilmannCJSorgoAGSiliakusARDekkerHLBrulS 2011 Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology 157 2297 2307
62. HomannORDeaJNobleSMJohnsonAD 2009 A phenotypic profile of the Candida albicans regulatory network. PLoS Genet 5 e1000783 doi:10.1371/journal.pgen.1000783
63. BregerJFuchsBBAperisGMoyTIAusubelFM 2007 Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3 e18 doi:10.1371/journal.ppat.0030018
64. PelegAYTampakakisEFuchsBBEliopoulosGMMoelleringRCJr 2008 Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci U S A 105 14585 14590
65. NobileCJAndesDRNettJESmithFJYueF 2006 Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2 e63 doi:10.1371/journal.ppat.0020063
66. NobileCJMitchellAP 2005 Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15 1150 1155
67. ReynoldsTBFinkGR 2001 Bakers' yeast, a model for fungal biofilm formation. Science 291 878 881
68. LariviereLGeigerSHoeppnerSRotherSStrasserK 2006 Structure and TBP binding of the Mediator head subcomplex Med8-Med18-Med20. Nat Struct Mol Biol 13 895 901
69. LariviereLSeizlMvan WageningenSRotherSvan de PaschL 2008 Structure-system correlation identifies a gene regulatory Mediator submodule. Genes Dev 22 872 877
70. CarreraIJanodyFLeedsNDuveauFTreismanJE 2008 Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc Natl Acad Sci U S A 105 6644 6649
71. ShahiPGulshanKNaarAMMoye-RowleyWS 2010 Differential roles of transcriptional mediator subunits in regulation of multidrug resistance gene expression in Saccharomyces cerevisiae. Mol Biol Cell 21 2469 2482
72. KellyMTMacCallumDMClancySDOddsFCBrownAJ 2004 The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol Microbiol 53 969 983
73. MehtaSMiklosISipiczkiMSenguptaSSharmaN 2009 The Med8 mediator subunit interacts with the Rpb4 subunit of RNA polymerase II and Ace2 transcriptional activator in Schizosaccharomyces pombe. FEBS Lett 583 3115 3120
74. NobileCJSchneiderHANettJESheppardDCFillerSG 2008 Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18 1017 1024
75. AnsariSAHeQMorseRH 2009 Mediator complex association with constitutively transcribed genes in yeast. Proc Natl Acad Sci U S A 106 16734 16739
76. FanXChouDMStruhlK 2006 Activator-specific recruitment of Mediator in vivo. Nat Struct Mol Biol 13 117 120
77. FanXStruhlK 2009 Where does mediator bind in vivo? PLoS ONE 4 e5029 doi:10.1371/journal.pone.0005029
78. AndrauJCvan de PaschLLijnzaadPBijmaTKoerkampMG 2006 Genome-wide location of the coactivator Mediator: binding without activation and transient Cdk8 interaction on DNA. Mol Cell 22 179 192
79. LiFPalecekSP 2003 EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell 2 1266 1273
80. BrucknerSMoschHU 2012 Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 36 25 58
81. BauerJWendlandJ 2007 Candida albicans Sfl1 suppresses flocculation and filamentation. Eukaryot Cell 6 1736 1744
82. MuradAMLengPStraffonMWishartJMacaskillS 2001 NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20 4742 4752
83. CaoFLaneSRanigaPPLuYZhouZ 2006 The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol Biol Cell 17 295 307
84. KurasLBorggrefeTKornbergRD 2003 Association of the Mediator complex with enhancers of active genes. Proc Natl Acad Sci U S A 100 13887 13891
85. ConlanRSTzamariasD 2001 Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309 1007 1015
86. HalmeABumgarnerSStylesCFinkGR 2004 Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116 405 415
87. VerstrepenKJFinkGR 2009 Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu Rev Genet 43 1 24
88. WilsonRBDavisDMitchellAP 1999 Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181 1868 1874
89. JinYSamaranayakeLPSamaranayakeYYipHK 2004 Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol 49 789 798
90. JinYYipHKSamaranayakeYHYauJYSamaranayakeLP 2003 Biofilm-forming ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol 41 2961 2967
91. DagleyMJGentleIEBeilharzTHPettolinoFADjordjevicJT 2011 Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2. Mol Microbiol 79 968 989
92. SkrzypekMSArnaudMBCostanzoMCInglisDOShahP 2010 New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucleic Acids Res 38 D428 D432
93. HusseinBHuangHGloryAOsmaniAKaminskyjS 2011 G1/S transcription factor orthologues Swi4p and Swi6p are important but not essential for cell proliferation and influence hyphal development in the fungal pathogen Candida albicans. Eukaryot Cell 10 384 397
94. SmootMEOnoKRuscheinskiJWangPLIdekerT 2011 Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27 431 432
95. GreenCBZhaoXYeaterKMHoyerLL 2005 Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology 151 1051 1060
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 4
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- A Coordinated Interdependent Protein Circuitry Stabilizes the Kinetochore Ensemble to Protect CENP-A in the Human Pathogenic Yeast
- Coordinate Regulation of Lipid Metabolism by Novel Nuclear Receptor Partnerships
- Defective Membrane Remodeling in Neuromuscular Diseases: Insights from Animal Models
- Formation of Rigid, Non-Flight Forewings (Elytra) of a Beetle Requires Two Major Cuticular Proteins