#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Whole-Exome Sequencing and Homozygosity Analysis Implicate Depolarization-Regulated Neuronal Genes in Autism


Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolarization regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which may have broader applicability to other complex, heterogeneous disorders.


Vyšlo v časopise: Whole-Exome Sequencing and Homozygosity Analysis Implicate Depolarization-Regulated Neuronal Genes in Autism. PLoS Genet 8(4): e32767. doi:10.1371/journal.pgen.1002635
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002635

Souhrn

Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolarization regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which may have broader applicability to other complex, heterogeneous disorders.


Zdroje

1. Autism and Developmental Disabilities Monitoring Network Surveillance Year 2006 Principal Investigators, Centers for Disease Control and Prevention (CDC) 2009 Prevalence of autism spectrum disorders - Autism and Developmental Disabilities Monitoring Network, United States, 2006. MMWR Surveill Summ 58 1 20

2. GeschwindDH 2011 Genetics of autism spectrum disorders. Trends Cogn Sci 15 409 416

3. HallmayerJClevelandSTorresAPhillipsJCohenB 2011 Genetic Heritability and Shared Environmental Factors Among Twin Pairs With Autism. Arch Gen Psychiatry 68 1095 1102

4. GeschwindDH 2009 Advances in autism. Annu Rev Med 60 367 380

5. O'RoakBJStateMW 2008 Autism genetics: strategies, challenges, and opportunities. Autism Res 1 4 17

6. SzatmariPPatersonADZwaigenbaumLRobertsWBrianJ 2007 Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39 319 328

7. WeissLAArkingDEDalyMJChakravartiA 2009 A genome-wide linkage and association scan reveals novel loci for autism. Nature 461 802 808

8. MitchellKJ 2011 The genetics of neurodevelopmental disease. Curr Opin Neurobiol 21 197 203

9. BetancurC 2011 Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380 42 77

10. MilesJH 2011 Autism spectrum disorders–a genetics review. Genet Med 13 278 294

11. MorrowEMYooSYFlavellSWKimTKLinY 2008 Identifying autism loci and genes by tracing recent shared ancestry. Science 321 218 223

12. HamamyHAMasriATAl-HadidyAMAjlouniKM 2007 Consanguinity and genetic disorders. Profile from Jordan. Saudi Med J 28 1015 1017

13. HoodfarETeebiAS 1996 Genetic referrals of Middle Eastern origin in a western city: inbreeding and disease profile. J Med Genet 33 212 215

14. StollCAlembikYDottBFeingoldJ 1994 Parental consanguinity as a cause of increased incidence of birth defects in a study of 131,760 consecutive births. Am J Med Genet 49 114 117

15. NallsMAGuerreiroRJSimon-SanchezJBrasJTTraynorBJ 2009 Extended tracts of homozygosity identify novel candidate genes associated with late-onset Alzheimer's disease. Neurogenetics 10 183 190

16. Schuurs-HoeijmakersJHHehir-KwaJYPfundtRvan BonBWde LeeuwN 2011 Homozygosity mapping in outbred families with mental retardation. Eur J Hum Genet 19 597 601

17. CollinRWvan den BornLIKleveringBJde Castro-MiroMLittinkKW 2011 High-resolution homozygosity mapping is a powerful tool to detect novel mutations causative for autosomal recessive RP in the Dutch population. Invest Ophthalmol Vis Sci 52 2227 2239

18. LenczTLambertCDeRossePBurdickKEMorganTV 2007 Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci U S A 104 19942 19947

19. LanderESBotsteinD 1987 Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236 1567 1570

20. GeschwindDHSowinskiJLordCIversenPShestackJ 2001 The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. Am J Hum Genet 69 463 466

21. KrawitzPMSchweigerMRRodelspergerCMarcelisCKolschU 2010 Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42 827 829

22. WoodsCGCoxJSpringellKHampshireDJMohamedMD 2006 Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am J Hum Genet 78 889 896

23. PurcellSNealeBTodd-BrownKThomasLFerreiraMA 2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81 559 575

24. StevensELHeckenbergGRobersonEDBaugherJDDowneyTJ 2011 Inference of relationships in population data using identity-by-descent and identity-by-state. PLoS Genet 7 e1002287 doi:10.1371/journal.pgen.1002287

25. GongTWHuangLWarnerSJLomaxMI 2003 Characterization of the human UBE3B gene: structure, expression, evolution, and alternative splicing. Genomics 82 143 152

26. GreerPLHanayamaRBloodgoodBLMardinlyARLiptonDM 2010 The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140 704 716

27. MargolisSSSalogiannisJLiptonDMMandel-BrehmCWillsZP 2010 EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143 442 455

28. HolmesSERiaziMAGongWMcDermidHESellingerBT 1997 Disruption of the clathrin heavy chain-like gene (CLTCL) associated with features of DGS/VCFS: a balanced (21;22)(p12;q11) translocation. Hum Mol Genet 6 357 367

29. WalshCAMorrowEMRubensteinJL 2008 Autism and brain development. Cell 135 396 400

30. RamockiMBZoghbiHY 2008 Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455 912 918

31. FlavellSWGreenbergME 2008 Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31 563 590

32. FlavellSWKimTKGrayJMHarminDAHembergM 2008 Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60 1022 1038

33. MonnierNSatreVLerougeEBerthoinFLunardiJ 2000 OCRL1 mutation analysis in French Lowe syndrome patients: implications for molecular diagnosis strategy and genetic counseling. Hum Mutat 16 157 165

34. ChouYYChaoSCChiouYYLinSJ 2005 Identification of OCRL1 mutations in two Taiwanese Lowe syndrome patients. Acta Paediatr Taiwan 46 226 229

35. SchrammLGalAZimmermannJNetzerKOHeidbrederE 2004 Advanced renal insufficiency in a 34-year-old man with Lowe syndrome. Am J Kidney Dis 43 538 543

36. CauMAddisMCongiuRMeloniCCaoA 2006 A locus for familial skewed X chromosome inactivation maps to chromosome Xq25 in a family with a female manifesting Lowe syndrome. J Hum Genet 51 1030 1036

37. NgSBBuckinghamKJLeeCBighamAWTaborHK 2010 Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42 30 35

38. RoachJCGlusmanGSmitAFHuffCDHubleyR 2010 Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328 636 639

39. BilguvarKOzturkAKLouviAKwanKYChoiM 2010 Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467 207 210

40. O'RoakBJDeriziotisPLeeCVivesLSchwartzJJ 2011 Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43 585 589

41. SandersSJErcan-SencicekAGHusVLuoRMurthaMT 2011 Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70 863 885

42. GlessnerJTWangKCaiGKorvatskaOKimCE 2009 Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459 569 573

43. MajorJE 2007 Genomic mutation consequence calculator. Bioinformatics 23 3091 3092

44. AdzhubeiIASchmidtSPeshkinLRamenskyVEGerasimovaA 2010 A method and server for predicting damaging missense mutations. Nat Methods 7 248 249

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#