Polyglutamine Toxicity Is Controlled by Prion Composition and Gene Dosage in Yeast
Polyglutamine expansion causes diseases in humans and other mammals. One example is Huntington's disease. Fragments of human huntingtin protein having an expanded polyglutamine stretch form aggregates and cause cytotoxicity in yeast cells bearing endogenous QN-rich proteins in the aggregated (prion) form. Attachment of the proline(P)-rich region targets polyglutamines to the large perinuclear deposit (aggresome). Aggresome formation ameliorates polyglutamine cytotoxicity in cells containing only the prion form of Rnq1 protein. Here we show that expanded polyglutamines both with (poly-QP) or without (poly-Q) a P-rich stretch remain toxic in the presence of the prion form of translation termination (release) factor Sup35 (eRF3). A Sup35 derivative that lacks the QN-rich domain and is unable to be incorporated into aggregates counteracts cytotoxicity, suggesting that toxicity is due to Sup35 sequestration. Increase in the levels of another release factor, Sup45 (eRF1), due to either disomy by chromosome II containing the SUP45 gene or to introduction of the SUP45-bearing plasmid counteracts poly-Q or poly-QP toxicity in the presence of the Sup35 prion. Protein analysis confirms that polyglutamines alter aggregation patterns of Sup35 and promote aggregation of Sup45, while excess Sup45 counteracts these effects. Our data show that one and the same mode of polyglutamine aggregation could be cytoprotective or cytotoxic, depending on the composition of other aggregates in a eukaryotic cell, and demonstrate that other aggregates expand the range of proteins that are susceptible to sequestration by polyglutamines.
Vyšlo v časopise:
Polyglutamine Toxicity Is Controlled by Prion Composition and Gene Dosage in Yeast. PLoS Genet 8(4): e32767. doi:10.1371/journal.pgen.1002634
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002634
Souhrn
Polyglutamine expansion causes diseases in humans and other mammals. One example is Huntington's disease. Fragments of human huntingtin protein having an expanded polyglutamine stretch form aggregates and cause cytotoxicity in yeast cells bearing endogenous QN-rich proteins in the aggregated (prion) form. Attachment of the proline(P)-rich region targets polyglutamines to the large perinuclear deposit (aggresome). Aggresome formation ameliorates polyglutamine cytotoxicity in cells containing only the prion form of Rnq1 protein. Here we show that expanded polyglutamines both with (poly-QP) or without (poly-Q) a P-rich stretch remain toxic in the presence of the prion form of translation termination (release) factor Sup35 (eRF3). A Sup35 derivative that lacks the QN-rich domain and is unable to be incorporated into aggregates counteracts cytotoxicity, suggesting that toxicity is due to Sup35 sequestration. Increase in the levels of another release factor, Sup45 (eRF1), due to either disomy by chromosome II containing the SUP45 gene or to introduction of the SUP45-bearing plasmid counteracts poly-Q or poly-QP toxicity in the presence of the Sup35 prion. Protein analysis confirms that polyglutamines alter aggregation patterns of Sup35 and promote aggregation of Sup45, while excess Sup45 counteracts these effects. Our data show that one and the same mode of polyglutamine aggregation could be cytoprotective or cytotoxic, depending on the composition of other aggregates in a eukaryotic cell, and demonstrate that other aggregates expand the range of proteins that are susceptible to sequestration by polyglutamines.
Zdroje
1. ShaoJDiamondMI 2007 Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 16 R115 123
2. La SpadaARTaylorJP 2010 Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat Rev Genet 11 247 258
3. The Huntington's Disease Collaborative Research Group 1993 A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72 971 983
4. DiFigliaMSappEChaseKODaviesSWBatesGP 1997 Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277 1990 1993
5. LunkesALindenbergKSBen-HaiemLWeberCDevysD 2002 Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell 10 259 269
6. MangiariniLSathasivamKSellerMCozensBHarperA 1996 Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87 493 506
7. StackECKubilusJKSmithKCormierKDel SignoreSJ 2005 Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington's disease transgenic mice. J Comp Neurol 490 354 370
8. ZoghbiHYOrrHT 1999 Polyglutamine diseases: protein cleavage and aggregation. Curr Opin Neurobiol 9 566 570
9. SteffanJSKazantsevASpasic-BoskovicOGreenwaldMZhuYZ 2000 The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 97 6763 6768
10. HayDGSathasivamKTobabenSStahlBMarberM 2004 Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet 13 1389 1405
11. RavikumarBVacherCBergerZDaviesJELuoS 2004 Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36 585 595
12. YamanakaTTosakiAMiyazakiHKurosawaMFurukawaY 2010 Mutant huntingtin fragment selectively suppresses Brn-2 POU domain transcription factor to mediate hypothalamic cell dysfunction. Hum Mol Genet 19 2099 2112
13. RossCAPoirierMA 2004 Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl S10 17
14. HandsSLWyttenbachA 2010 Neurotoxic protein oligomerisation associated with polyglutamine diseases. Acta Neuropathol 120 419 437
15. DaviesSWTurmaineMCozensBADiFigliaMSharpAH 1997 Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90 537 548
16. ScherzingerELurzRTurmaineMMangiariniLHollenbachB 1997 Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90 549 558
17. RossCAWoodJDSchillingGPetersMFNuciforaFCJr 1999 Polyglutamine pathogenesis. Philos Trans R Soc Lond B Biol Sci 354 1005 1011
18. RossCATabriziSJ 2011 Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10 83 98
19. JohnstonJAWardCLKopitoRR 1998 Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143 1883 1898
20. WaelterSBoeddrichALurzRScherzingerELuederG 2001 Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 12 1393 1407
21. TaylorJPTanakaFRobitschekJSandovalCMTayeA 2003 Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet 12 749 757
22. OlzmannJALiLChinLS 2008 Aggresome formation and neurodegenerative diseases: therapeutic implications. Curr Med Chem 15 47 60
23. KopitoRR 2000 Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10 524 530
24. Garcia-MataRGaoYSSztulE 2002 Hassles with taking out the garbage: aggravating aggresomes. Traffic 3 388 396
25. OlzmannJALiLChudaevMVChenJPerezFA 2007 Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol 178 1025 1038
26. ChinLSOlzmannJALiL 2010 Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem Soc Trans 38 144 149
27. BondziCBrunnerAMMunyikwaMRConnorCDSimmonsAN 2011 Recruitment of the oncoprotein v-ErbA to aggresomes. Mol Cell Endocrinol 332 196 212
28. KrobitschSLindquistS 2000 Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 97 1589 1594
29. MuchowskiPJSchaffarGSittlerAWankerEEHayer-HartlMK 2000 Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci USA 97 7841 7846
30. MeriinABZhangXHeXNewnamGPChernoffYO 2002 Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J Cell Biol 157 997 1004
31. DuennwaldMLJagadishSGiorginiFMuchowskiPJLindquistS 2006 A network of protein interactions determines polyglutamine toxicity. Proc Natl Acad Sci USA 103 11051 11056
32. DuennwaldMLJagadishSMuchowskiPJLindquistS 2006 Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc Natl Acad Sci USA 103 11045 11050
33. DuennwaldML 2011 Polyglutamine misfolding in yeast: toxic and protective aggregation. Prion 5 285 290
34. MasonRPGiorginiF 2011 Modeling Huntington disease in yeast: perspectives and future directions. Prion 5 269 276
35. GokhaleKCNewnamGPShermanMYChernoffYO 2005 Modulation of prion-dependent polyglutamine aggregation and toxicity by chaperone proteins in the yeast model. J Biol Chem 280 22809 22818
36. WicknerRBEdskesHKShewmakerFNakayashikiTEngelA 2007 Yeast prions: evolution of the prion concept. Prion 1 94 100
37. TuiteMFCoxBS 2003 Propagation of yeast prions. Nat Rev Mol Cell Biol 4 878 890
38. Inge-VechtomovSGZhouravlevaGAChernoffYO 2007 Biological roles of prion domains. Prion 1 228 235
39. MeriinABZhangXMiliarasNBKazantsevAChernoffYO 2003 Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Mol Cell Biol 23 7554 7565
40. MeriinABZhangXAlexandrovIMSalnikovaABTer-AvanesianMD 2007 Endocytosis machinery is involved in aggregation of proteins with expanded polyglutamine domains. FASEB J 21 1915 1925
41. CavistonJPHolzbaurEL 2009 Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol 19 147 155
42. WangYMeriinABZaarurNRomanovaNVChernoffYO 2009 Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. FASEB J 23 451 463
43. UrakovVNVishnevskayaABAlexandrovIMKushnirovVVSmirnovVN 2010 Interdependence of amyloid formation in yeast: implications for polyglutamine disorders and biological functions. Prion 4 45 52
44. SeufertWJentschS 1990 Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9 543 550
45. StansfieldIJonesKMKushnirovVVDagkesamanskayaARPoznyakovskiAI 1995 The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14 4365 4373
46. KallmeyerAKKeelingKMBedwellDM 2006 Eukaryotic release factor 1 phosphorylation by CK2 protein kinase is dynamic but has little effect on the efficiency of translation termination in Saccharomyces cerevisiae. Eukaryot Cell 5 1378 1387
47. MoskalenkoSEZhuravlevaGASoomMShabel'skaiaSVVolkovKV 2004 Characterization of missense mutations in the SUP45 gene of Saccharomyces cerevisiae encoding translation termination factor eRF1. Genetika 40 599 606
48. KaganovichDKopitoRFrydmanJ 2008 Misfolded proteins partition between two distinct quality control compartments. Nature 454 1088 1095
49. VishveshwaraNBradleyMELiebmanSW 2009 Sequestration of essential proteins causes prion associated toxicity in yeast. Mol Microbiol 73 1101 1114
50. ValouevIAKushnirovVVTer-AvanesyanMD 2002 Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation. Cell Motil Cytoskeleton 52 161 173
51. DagkesamanskayaARTer-AvanesyanMD 1991 Interaction of the yeast omnipotent suppressors SUP1(SUP45) and SUP2(SUP35) with non-mendelian factors. Genetics 128 513 520
52. DerkatchILUptainSMOuteiroTFKrishnanRLindquistSL 2004 Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci U S A 101 12934 12939
53. AllenKDChernovaTATennantEPWilkinsonKDChernoffYO 2007 Effects of ubiquitin system alterations on the formation and loss of a yeast prion. J Biol Chem 282 3004 3013
54. PaganoM 1997 Cell cycle regulation by the ubiquitin pathway. FASEB J 11 1067 1075
55. Al-HakimAEscribano-DiazCLandryMCO'DonnellLPanierS 2010 The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair 9 1229 1240
56. SinghRKKabbajMHPaikJGunjanA 2009 Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat Cell Biol 11 925 933
57. SleepDFinnisCTurnerAEvansL 2001 Yeast 2 microm plasmid copy number is elevated by a mutation in the nuclear gene UBC4. Yeast 18 403 421
58. KingMAHandsSHafizFMizushimaNTolkovskyAM 2008 Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis. Mol Pharmacol 73 1052 1063
59. WexlerNSLorimerJPorterJGomezFMoskowitzC 2004 Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proc Natl Acad Sci USA 101 3498 3503
60. KrammerCKryndushkinDSuhreMHKremmerEHofmannA 2009 The yeast Sup35NM domain propagates as a prion in mammalian cells. Proc Natl Acad Sci USA 106 462 467
61. OlzschaHSchermannSMWoernerACPinkertSHechtMH 2011 Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144 67 78
62. ChernoffYOGalkinAPLewitinEChernovaTANewnamGP 2000 Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol 35 865 876
63. LongtineMSMcKenzieA3rdDemariniDJShahNGWachA 1998 Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14 953 961
64. ShermanF 2002 Getting started with yeast. Methods Enzymol 350 3 41
65. HalfmannRLindquistS 2008 Screening for amyloid aggregation by Semi-Denaturing Detergent-Agarose Gel Electrophoresis. J Vis Exp doi 10.3791/838
66. MillerJH 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY Cold Spring Harbor Laboratory
67. LemoineFJDegtyarevaNPLobachevKPetesTD 2005 Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120 587 598
68. Le GoffCZemlyankoOMoskalenkoSBerkovaNInge-VechtomovS 2002 Mouse GSPT2, but not GSPT1, can substitute for yeast eRF3 in vivo. Genes Cells 7 1043 1057
69. Ter-AvanesyanMDKushnirovVVDagkesamanskayaARDidichenkoSAChernoffYO 1993 Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7 683 692
70. SerioTRCashikarAGMoslehiJJKowalASLindquistSL 1999 Yeast prion [psi+] and its determinant, Sup35p. Methods Enzymol 309 649 673
71. LaneyJDHochstrasserM 2003 Ubiquitin-dependent degradation of the yeast Matα2 repressor enables a switch in developmental state. Genes Dev 17 2259 2270
72. FiroozanMGrantCMDuarteJATuiteMF 1991 Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast 7 173 183
73. StoriciFResnickMA 2006 The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol 409 329 345
74. SikorskiRSHieterP 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122 19 27
75. NewnamGPBirchmoreJLChernoffYO 2011 Destabilization and recovery of a yeast prion after mild heat shock. J Mol Biol 408 432 448
76. AllenKDWegrzynRDChernovaTAMèullerSNewnamGP 2005 Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genetics 169 1227 1242
77. NarayananVMieczkowskiPAKimHMPetesTDLobachevKS 2006 The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell 125 1283 1296
78. ArguesoJLWestmorelandJMieczkowskiPAGawelMPetesTD 2008 Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci USA 105 11845 11850
79. DeRisiJLIyerVRBrownPO 1997 Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278 680 686
80. WangPKimYPollackJNarasimhanBTibshiraniR 2005 A method for calling gains and losses in array CGH data. Biostatistics 6 45 58
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 4
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- A Coordinated Interdependent Protein Circuitry Stabilizes the Kinetochore Ensemble to Protect CENP-A in the Human Pathogenic Yeast
- Coordinate Regulation of Lipid Metabolism by Novel Nuclear Receptor Partnerships
- Defective Membrane Remodeling in Neuromuscular Diseases: Insights from Animal Models
- Formation of Rigid, Non-Flight Forewings (Elytra) of a Beetle Requires Two Major Cuticular Proteins