#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Detecting Individual Sites Subject to Episodic Diversifying Selection


The imprint of natural selection on protein coding genes is often difficult to identify because selection is frequently transient or episodic, i.e. it affects only a subset of lineages. Existing computational techniques, which are designed to identify sites subject to pervasive selection, may fail to recognize sites where selection is episodic: a large proportion of positively selected sites. We present a mixed effects model of evolution (MEME) that is capable of identifying instances of both episodic and pervasive positive selection at the level of an individual site. Using empirical and simulated data, we demonstrate the superior performance of MEME over older models under a broad range of scenarios. We find that episodic selection is widespread and conclude that the number of sites experiencing positive selection may have been vastly underestimated.


Vyšlo v časopise: Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet 8(7): e32767. doi:10.1371/journal.pgen.1002764
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002764

Souhrn

The imprint of natural selection on protein coding genes is often difficult to identify because selection is frequently transient or episodic, i.e. it affects only a subset of lineages. Existing computational techniques, which are designed to identify sites subject to pervasive selection, may fail to recognize sites where selection is episodic: a large proportion of positively selected sites. We present a mixed effects model of evolution (MEME) that is capable of identifying instances of both episodic and pervasive positive selection at the level of an individual site. Using empirical and simulated data, we demonstrate the superior performance of MEME over older models under a broad range of scenarios. We find that episodic selection is widespread and conclude that the number of sites experiencing positive selection may have been vastly underestimated.


Zdroje

1. MuseSVGautBS 1994 A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11 715 724

2. GoldmanNYangZ 1994 A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11 725 36

3. DelportWSchefflerKSeoigheC 2009 Models of coding sequence evolution. Brief Bioinform 10 97 109

4. AnisimovaMKosiolC 2009 Investigating protein-coding sequence evolution with probabilistic codon substitution models. Mol Biol Evol 26 255 271

5. HughesALNeiM 1988 Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335 167 70

6. BonhoefferSHolmesECNowakMA 1995 Causes of HIV diversity. Nature 376 125

7. MessierWStewartCB 1997 Episodic adaptive evolution of primate lysozymes. Nature 385 151 4

8. KimuraM 1968 Evolutionary rate at the molecular level. Nature 217 624 6

9. NielsenRBustamanteCClarkAGGlanowskiSSacktonTB 2005 A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3 e170 doi:10.1371/journal.pbio.0030170

10. NielsenRYangZ 1998 Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148 929 36

11. SawyerSLWuLIEmermanMMalikHS 2005 Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci U S A 102 2832 7

12. BraultACHuangCYHLangevinSAKinneyRMBowenRA 2007 A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet 39 1162 6

13. GuindonSRodrigoAGDyerKAHuelsenbeckJP 2004 Modeling the site-specific variation of selection patterns along lineages. Proceedings of the National Academy of Sciences of the United States of America 101 12957 12962

14. DelportWSchefflerKSeoigheC 2008 Frequent toggling between alternative amino acids is driven by selection in HIV-1. PLoS Pathog 4 e1000242 doi:10.1371/journal.ppat.1000242

15. SeoigheCKetwarooFPillayVSchefflerKWoodN 2007 A model of directional selection applied to the evolution of drug resistance in HIV-1. Mol Biol Evol 24 1025 31

16. Kosakovsky PondSLPoonAFYLeigh BrownAJFrostSDW 2008 A maximum likelihood method for detecting directional evolution in protein sequences and its application to inuenza A virus. Mol Biol Evol 25 1809 24

17. YangZdos ReisM 2011 Statistical properties of the branch-site test of positive selection. Mol Biol Evol 28 1217 28

18. YokoyamaSTadaTZhangHBrittL 2008 Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci U S A 105 13480 5

19. ChenJSunY 2011 Variation in the analysis of positively selected sites using nonsynonymous/synonymous rate ratios: an example using inuenza virus. PLoS ONE 6 e19996 doi:10.1371/journal.pone.0019996

20. Kosakovsky PondSLMurrellBFourmentMFrostSDWDelportW 2011 A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol 28 3033 3043

21. Kosakovsky PondSDelportWMuseSVSchefflerK 2010 Correcting the bias of empirical frequency parameter estimators in codon models. PLoS ONE 5 e11230 doi:10.1371/journal.pone.0011230

22. FelsensteinJ 1981 Evolutionary trees from DNA-sequences – a maximum-likelihood approach. J Mol Evol 17 368 376

23. YangZ 2000 Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human inuenza virus A. Journal of Molecular Evolution 51 423 432

24. Kosakovsky PondSLFrostSDW 2005 Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22 1208 1222

25. WertheimJOKosakovsky PondSL 2011 Purifying selection can obscure the ancient age of viral lineages. Mol Biol Evol

26. PondSKMuseSV 2005 Site-to-site variation of synonymous substitution rates. Mol Biol Evol 22 2375 85

27. SelfSGLiangKY 1987 Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests Under Nonstandard Conditions. J Am Stat Assoc 82 605 310

28. YangZHNielsenRGoldmanNPedersenAMK 2000 Codon-Substitution Models for Heterogeneous Selection Pressure at Amino Acid Sites. Genetics 155 431 449

29. NozawaMSuzukiYNeiM 2009 Reliabilities of identifying positive selection by the branch-site and the site-prediction methods. Proc Natl Acad Sci U S A 106 6700 5

30. PondSLKSchefflerKGravenorMBPoonAFYFrostSDW 2010 Evolutionary fingerprinting of genes. Mol Biol Evol 27 520 36

31. WuKPWuCWTsaoYPKuoTWLouYC 2003 Structural basis of a avivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J Biol Chem 278 46007 13

32. GangwarRSShilPCherianSSGoreMM 2011 Delineation of an epitope on domain I of Japanese encephalitis virus Envelope glycoprotein using monoclonal antibodies. Virus Res 158 179 87

33. TanakaTNeiM 1989 Positive darwinian selection observed at the variable-region genes of immunoglobulins. Mol Biol Evol 6 447 59

34. HarmsenMRuulsRNijmanINiewoldTFrenkenL 2000 Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Molecular Immunology 37 579 590

35. SuCNguyenVKNeiM 2002 Adaptive evolution of variable region genes encoding an unusual type of immunoglobulin in camelids. Mol Biol Evol 19 205 15

36. BenjaminiYHochbergY 1995 Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 57 289 300

37. TuffleyCSteelM 1998 Modeling the covarion hypothesis of nucleotide substitution. Mathematical biosciences 147 63 91

38. McDonaldJHKreitmanM 1991 Adaptive protein evolution at the Adh locus in Drosophila. Nature 351 652 4

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#