#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Gene Encodes a Nuclear Protein That Affects Alternative Splicing


RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre–mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicing-related diseases. We previously isolated a Caenorhabditis elegans mutant defective in an essential gene from a genetic screen for suppressors of the rubberband Unc phenotype of unc-93(e1500) animals. This mutant contains missense mutations in two adjacent codons of the C. elegans microfibrillar-associated protein 1 gene mfap-1. mfap-1(n4564 n5214) suppresses the Unc phenotypes of different rubberband Unc mutants in a pattern similar to that of mutations in the splicing factor genes uaf-1 (the C. elegans U2AF large subunit gene) and sfa-1 (the C. elegans SF1/BBP gene). We used the endogenous gene tos-1 as a reporter for splicing and detected increased intron 1 retention and exon 3 skipping of tos-1 transcripts in mfap-1(n4564 n5214) animals. Using a yeast two-hybrid screen, we isolated splicing factors as potential MFAP-1 interactors. Our studies indicate that C. elegans mfap-1 encodes a splicing factor that can affect alternative splicing.


Vyšlo v časopise: The Gene Encodes a Nuclear Protein That Affects Alternative Splicing. PLoS Genet 8(7): e32767. doi:10.1371/journal.pgen.1002827
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002827

Souhrn

RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre–mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicing-related diseases. We previously isolated a Caenorhabditis elegans mutant defective in an essential gene from a genetic screen for suppressors of the rubberband Unc phenotype of unc-93(e1500) animals. This mutant contains missense mutations in two adjacent codons of the C. elegans microfibrillar-associated protein 1 gene mfap-1. mfap-1(n4564 n5214) suppresses the Unc phenotypes of different rubberband Unc mutants in a pattern similar to that of mutations in the splicing factor genes uaf-1 (the C. elegans U2AF large subunit gene) and sfa-1 (the C. elegans SF1/BBP gene). We used the endogenous gene tos-1 as a reporter for splicing and detected increased intron 1 retention and exon 3 skipping of tos-1 transcripts in mfap-1(n4564 n5214) animals. Using a yeast two-hybrid screen, we isolated splicing factors as potential MFAP-1 interactors. Our studies indicate that C. elegans mfap-1 encodes a splicing factor that can affect alternative splicing.


Zdroje

1. NilsenTWGraveleyBR 2010 Expansion of the eukaryotic proteome by alternative splicing. Nature 463 457 463

2. ManiatisTTasicB 2002 Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418 236 243

3. JuricaMSMooreMJ 2003 Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12 5 14

4. AbovichNRosbashM 1997 Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89 403 412

5. ArningSGruterPBilbeGKramerA 1996 Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA. RNA 2 794 810

6. KrainerARManiatisT 1985 Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell 42 725 736

7. MadhaniHDGuthrieC 1994 Dynamic RNA-RNA interactions in the spliceosome. Annu Rev Genet 28 1 26

8. MerendinoLGuthSBilbaoDMartinezCValcarcelJ 1999 Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG. Nature 402 838 841

9. WuSRomfoCMNilsenTWGreenMR 1999 Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 402 832 835

10. ZamorePDGreenMR 1991 Biochemical characterization of U2 snRNP auxiliary factor: an essential pre-mRNA splicing factor with a novel intranuclear distribution. EMBO J 10 207 214

11. ZorioDABlumenthalT 1999 Both subunits of U2AF recognize the 3′ splice site in Caenorhabditis elegans. Nature 402 835 838

12. ReedR 2000 Mechanisms of fidelity in pre-mRNA splicing. Curr Opin Cell Biol 12 340 345

13. CooperTAWanLDreyfussG 2009 RNA and disease. Cell 136 777 793

14. WangGSCooperTA 2007 Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8 749 761

15. GuthSValcarcelJ 2000 Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF. J Biol Chem 275 38059 38066

16. RutzBSeraphinB 1999 Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly. RNA 5 819 831

17. TanackovicGKramerA 2005 Human splicing factor SF3a, but not SF1, is essential for pre-mRNA splicing in vivo. Mol Biol Cell 16 1366 1377

18. PleissJAWhitworthGBBergkesselMGuthrieC 2007 Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol 5 e90 doi:10.1371/journal.pbio.0050090

19. BlanchetteMLabourierEGreenREBrennerSERioDC 2004 Genome-wide analysis reveals an unexpected function for the Drosophila splicing factor U2AF50 in the nuclear export of intronless mRNAs. Mol Cell 14 775 786

20. de la CruzIPLevinJZCumminsCAndersonPHorvitzHR 2003 sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans. J Neurosci 23 9133 9145

21. GreenwaldIHorvitzHR 1986 A visible allele of the muscle gene sup-10 X of C. elegans. Genetics 113 63 72

22. GreenwaldISHorvitzHR 1980 unc-93(e1500): A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. Genetics 96 147 164

23. LevinJZHorvitzHR 1992 The Caenorhabditis elegans unc-93 gene encodes a putative transmembrane protein that regulates muscle contraction. J Cell Biol 117 143 155

24. BrinkmannMMSpoonerEHoebeKBeutlerBPloeghHL 2007 The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol 177 265 275

25. CasrougeAZhangSYEidenschenkCJouanguyEPuelA 2006 Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314 308 312

26. KimYMBrinkmannMMPaquetMEPloeghHL 2008 UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452 234 238

27. KoehnJHueskenDJaritzMRotAZuriniM 2007 Assessing the function of human UNC-93B in Toll-like receptor signaling and major histocompatibility complex II response. Hum Immunol 68 871 878

28. TabetaKHoebeKJanssenEMDuXGeorgelP 2006 The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7 156 164

29. MaLHorvitzHR 2009 Mutations in the Caenorhabditis elegans U2AF large subunit UAF-1 alter the choice of a 3′ splice site in vivo. PLoS Genet 5 e1000708 doi:10.1371/journal.pgen.1000708

30. MaLTanZTengYHoerschSHorvitzHR 2011 In vivo effects on intron retention and exon skipping by the U2AF large subunit and SF1/BBP in the nematode Caenorhabditis elegans. RNA 17 2201 2211

31. LevinJZHorvitzHR 1993 Three new classes of mutations in the Caenorhabditis elegans muscle gene sup-9. Genetics 135 53 70

32. HorriganSKRichCBStreetenBWLiZYFosterJA 1992 Characterization of an associated microfibril protein through recombinant DNA techniques. J Biol Chem 267 10087 10095

33. AndersenDSTaponN 2008 Drosophila MFAP1 is required for pre-mRNA processing and G2/M progression. J Biol Chem 283 31256 31267

34. VincentKWangQJaySHobbsKRymondBC 2003 Genetic interactions with CLF1 identify additional pre-mRNA splicing factors and a link between activators of yeast vesicular transport and splicing. Genetics 164 895 907

35. BlantonSSrinivasanARymondBC 1992 PRP38 encodes a yeast protein required for pre-mRNA splicing and maintenance of stable U6 small nuclear RNA levels. Mol Cell Biol 12 3939 3947

36. MakarovEMMakarovaOVUrlaubHGentzelMWillCL 2002 Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298 2205 2208

37. RappsilberJRyderULamondAIMannM 2002 Large-scale proteomic analysis of the human spliceosome. Genome Res 12 1231 1245

38. ZhouZLickliderLJGygiSPReedR 2002 Comprehensive proteomic analysis of the human spliceosome. Nature 419 182 185

39. BrennerS 1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94

40. WicksSRYehRTGishWRWaterstonRHPlasterkRH 2001 Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28 160 164

41. McKimKSPetersKRoseAM 1993 Two types of sites required for meiotic chromosome pairing in Caenorhabditis elegans. Genetics 134 749 768

42. EdgleyMLBaillieDLRiddleDLRoseAM 2006 Genetic balancers. WormBook doi/10.1895/wormbook.1891.1897.1891, http://www.wormbook.org

43. ChienCTBartelPLSternglanzRFieldsS 1991 The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A 88 9578 9582

44. FieldsSSongO 1989 A novel genetic system to detect protein-protein interactions. Nature 340 245 246

45. HoffmanCS 2011 Preparation of yeast DNA. Curr Protoc Mol Biol 13 11

46. TimmonsLCourtDLFireA 2001 Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263 103 112

47. KamathRSFraserAGDongYPoulinGDurbinR 2003 Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421 231 237

48. RualJFCeronJKorethJHaoTNicotAS 2004 Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14 2162 2168

49. SawinERRanganathanRHorvitzHR 2000 C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26 619 631

50. MelloCCKramerJMStinchcombDAmbrosV 1991 Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10 3959 3970

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#