Induction of Cytoprotective Pathways Is Central to the Extension of Lifespan Conferred by Multiple Longevity Pathways
Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.
Vyšlo v časopise:
Induction of Cytoprotective Pathways Is Central to the Extension of Lifespan Conferred by Multiple Longevity Pathways. PLoS Genet 8(7): e32767. doi:10.1371/journal.pgen.1002792
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002792
Souhrn
Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.
Zdroje
1. CurranSPRuvkunG 2007 Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3 e56 doi:10.1371/journal.pgen.0030056
2. JohnsonTEde CastroEHegi de CastroSCypserJHendersonS 2001 Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp Gerontol 36 1609 1617
3. JohnsonTEHendersonSMurakamiSde CastroEde CastroSH 2002 Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease. J Inherit Metab Dis 25 197 206
4. de CastroEHegi de CastroSJohnsonTE 2004 Isolation of long-lived mutants in Caenorhabditis elegans using selection for resistance to juglone. Free Radic Biol Med 37 139 145
5. DoonanRMcElweeJJMatthijssensFWalkerGAHouthoofdK 2008 Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 22 3236 3241
6. BokovAChaudhuriARichardsonA 2004 The role of oxidative damage and stress in aging. Mechanisms of ageing and development 125 811 826
7. GoldenTRHinerfeldDAMelovS 2002 Oxidative stress and aging: beyond correlation. Aging cell 1 117 123
8. LarsenP 1993 Aging and resistance to oxidative damage in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 90 8905 8914
9. HarmanD 1956 Aging: a theory based on free radical and radiation chemistry. Journal of gerontology 11 298 300
10. PerezVIBokovAVan RemmenHMeleJRanQ 2009 Is the oxidative stress theory of aging dead? Biochimica et biophysica acta 1790 1005 1014
11. VanfleterenJR 1993 Oxidative stress and ageing in Caenorhabditis elegans. The Biochemical journal 292 Pt 2 605 608
12. PhillipsJPCampbellSDMichaudDCharbonneauMHillikerAJ 1989 Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proceedings of the National Academy of Sciences of the United States of America 86 2761 2765
13. LithgowGJWhiteTMMelovSJohnsonTE 1995 Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proceedings of the National Academy of Sciences of the United States of America 92 7540 7544
14. ReaSWuDCypserJVaupelJJohnsonT 2005 A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nature genetics 37 894 902
15. HsuA-LMurphyCKenyonC 2003 Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science (New York, NY) 300 1142 1147
16. FargnoliJKunisadaTFornaceAJJrSchneiderELHolbrookNJ 1990 Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proceedings of the National Academy of Sciences of the United States of America 87 846 850
17. UdelsmanRBlakeMJStaggCALiDGPutneyDJ 1993 Vascular heat shock protein expression in response to stress. Endocrine and autonomic regulation of this age-dependent response. The Journal of clinical investigation 91 465 473
18. Ben-ZviAMillerEAMorimotoRI 2009 Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proceedings of the National Academy of Sciences of the United States of America 106 14914 14919
19. MunozMRiddleD 2003 Positive selection of Caenorhabditis elegans mutants with increased stress resistance and longevity. Genetics 163 171 251
20. CalfonMZengHUranoFTillJHHubbardSR 2002 IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415 92 96
21. DurieuxJWolffSDillinA 2011 The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144 79 91
22. Henis-KorenblitSZhangPHansenMMcCormickMLeeSJ 2010 Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proc Natl Acad Sci U S A 107 9730 9735
23. YonedaTBenedettiCUranoFClarkSGHardingHP 2004 Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117 4055 4066
24. SykiotisGPBohmannD 2010 Stress-activated cap'n'collar transcription factors in aging and human disease. Science signaling 3 re3
25. SykiotisGPHabeosIGSamuelsonAVBohmannD 2011 The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Current opinion in clinical nutrition and metabolic care 14 41 48
26. TulletJMHertweckMAnJHBakerJHwangJY 2008 Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132 1025 1038
27. WalkerAKSeeRBatchelderCKophengnavongTGronnigerJT 2000 A conserved transcription motif suggesting functional parallels between Caenorhabditis elegans SKN-1 and Cap'n'Collar-related basic leucine zipper proteins. The Journal of biological chemistry 275 22166 22171
28. ZubovychIOStraudSRothMG 2010 Mitochondrial dysfunction confers resistance to multiple drugs in Caenorhabditis elegans. Mol Biol Cell 21 956 969
29. McElweeJJSchusterEBlancEThomasJHGemsD 2004 Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. The Journal of biological chemistry 279 44533 44543
30. GemsDMcElweeJJ 2005 Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling? Mechanisms of ageing and development 126 381 387
31. TaweWNEschbachMLWalterRDHenkle-DuhrsenK 1998 Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic acids research 26 1621 1627
32. MurphyCTMcCarrollSABargmannCIFraserAKamathRS 2003 Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424 277 283
33. CristinaDCaryMLuncefordAClarkeCKenyonC 2009 A regulated response to impaired respiration slows behavioral rates and increases lifespan in Caenorhabditis elegans. PLoS Genet 5 e1000450 doi:10.1371/journal.pgen.1000450
34. RogersANChenDMcCollGCzerwieniecGFelkeyK 2011 Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab 14 55 66
35. McElweeJJSchusterEBlancEThomasJHGemsD 2004 Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem 279 44533 44543
36. LiXMatilainenOJinCGlover-CutterKMHolmbergCI 2011 Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet 7 e1002119 doi:10.1371/journal.pgen.1002119
37. OliveiraRPPorter AbateJDilksKLandisJAshrafJ 2009 Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell 8 524 541
38. HsuALMurphyCTKenyonC 2003 Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300 1142 1145
39. ChenDThomasELKapahiP 2009 HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 5 e1000486 doi:10.1371/journal.pgen.1000486
40. GarsinDAVillanuevaJMBegunJKimDHSifriCD 2003 Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300 1921
41. KurzCLTanMW 2004 Regulation of aging and innate immunity in C. elegans. Aging cell 3 185 193
42. LawsTRHardingSVSmithMPAtkinsTPTitballRW 2004 Age influences resistance of Caenorhabditis elegans to killing by pathogenic bacteria. FEMS microbiology letters 234 281 287
43. Mohri-ShiomiAGarsinD 2008 Insulin signaling and the heat shock response modulate protein homeostasis in the Caenorhabditis elegans intestine during infection. The Journal of biological chemistry 283 194 395
44. ChavezVMohri-ShiomiAMaadaniAVegaLAGarsinDA 2007 Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 176 1567 1577
45. SinghVAballayA 2006 Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proceedings of the National Academy of Sciences of the United States of America 103 13092 13099
46. EvansEAKawliTTanMW 2008 Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog 4 e1000175 doi:10.1371/journal.ppat.1000175
47. MilletACEwbankJJ 2004 Immunity in Caenorhabditis elegans. Curr Opin Immunol 16 4 9
48. ShaoZZhangYYeQSaldanhaJNPowell-CoffmanJA 2010 C. elegans SWAN-1 Binds to EGL-9 and regulates HIF-1-mediated resistance to the bacterial pathogen Pseudomonas aeruginosa PAO1. PLoS Pathog 6 e1001075 doi:10.1371/journal.ppat.1001075
49. ShiversRPPaganoDJKooistraTRichardsonCEReddyKC 2010 Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. PLoS Genet 6 e1000892 doi:10.1371/journal.pgen.1000892
50. HamiltonBDongYShindoMLiuWOdellI 2005 A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19 1544 1555
51. HansenMHsuALDillinAKenyonC 2005 New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1 e17 doi:10.1371/journal.pgen.0010017
52. LeiersBKampkotterAGreveldingCGLinkCDJohnsonTE 2003 A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic Biol Med 34 1405 1415
53. HondaYHondaS 1999 The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13 1385 1393
54. AlperSMcBrideSJLackfordBFreedmanJHSchwartzDA 2007 Specificity and complexity of the Caenorhabditis elegans innate immune response. Mol Cell Biol 27 5544 5553
55. McKaySJJohnsenRKhattraJAsanoJBaillieDL 2003 Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harbor symposia on quantitative biology 68 159 169
56. OggSParadisSGottliebSPattersonGILeeL 1997 The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389 994 999
57. GuhaThakurtaDPalomarLStormoGDTedescoPJohnsonTE 2002 Identification of a novel cis-regulatory element involved in the heat shock response in Caenorhabditis elegans using microarray gene expression and computational methods. Genome Res 12 701 712
58. AnJHBlackwellTK 2003 SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17 1882 1893
59. KimJKGabelHWKamathRSTewariMPasquinelliA 2005 Functional genomic analysis of RNA interference in C. elegans. Science 308 1164 1167
60. ParryDHXuJRuvkunG 2007 A whole-genome RNAi Screen for C. elegans miRNA pathway genes. Curr Biol 17 2013 2022
61. Samuelson AVCCRuvkunG 2007 Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes and Development 21 2976 2994
62. UranoFCalfonMYonedaTYunCKiralyM 2002 A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J Cell Biol 158 639 646
63. Perez-CampoRLopez-TorresMCadenasSRojasCBarjaG 1998 The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. Journal of comparative physiology B, Biochemical, systemic, and environmental physiology 168 149 158
64. MeloJARuvkunG 2012 Inactivation of Conserved C. elegans Genes Engages Pathogen- and Xenobiotic-Associated Defenses. Cell 149 452 466
65. McEwanDLKirienkoNVAusubelFM 2012 Host Translational Inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an Immune Response in Caenorhabditis elegans. Cell host & microbe 11 364 374
66. DunbarTLYanZBallaKMSmelkinsonMGTroemelER 2012 C. elegans Detects Pathogen-Induced Translational Inhibition to Activate Immune Signaling. Cell host & microbe 11 375 386
67. KellAVenturaNKahnNJohnsonTE 2007 Activation of SKN-1 by novel kinases in Caenorhabditis elegans. Free Radic Biol Med 43 1560 1566
68. ChoeKPStrangeK 2007 Evolutionarily conserved WNK and Ste20 kinases are essential for acute volume recovery and survival after hypertonic shrinkage in Caenorhabditis elegans. Am J Physiol Cell Physiol 293 C915 927
69. YunCStanhillAYangYZhangYHaynesCM 2008 Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105 7094 7099
70. MehtaRSteinkrausKASutphinGLRamosFJShamiehLS 2009 Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science 324 1196 1198
71. HowardRASharmaPHajjarCCaldwellKACaldwellGA 2007 Ubiquitin conjugating enzymes participate in polyglutamine protein aggregation. BMC Cell Biol 8 32
72. GreerELMauresTJHauswirthAGGreenEMLeemanDS 2010 Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466 383 387
73. MauresTJGreerELHauswirthAGBrunetA 2011 The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell
74. BoukaftaneYDuncanAWangSLabudaDRobertMF 1994 Human mitochondrial HMG CoA synthase: liver cDNA and partial genomic cloning, chromosome mapping to 1p12-p13, and possible role in vertebrate evolution. Genomics 23 552 559
75. MorckCOlsenLKurthCPerssonAStormNJ 2009 Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 106 18285 18290
76. BuhaescuIIzzedineH 2007 Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem 40 575 584
77. MiskaEAAlvarez-SaavedraEAbbottALLauNCHellmanAB 2007 Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3 e215 doi:10.1371/journal.pgen.0030215
78. AmbrosV 2003 MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113 673 676
79. PocockR 2011 Invited review: decoding the microRNA response to hypoxia. Pflugers Arch 461 307 315
80. ChitwoodDHTimmermansMC 2010 Small RNAs are on the move. Nature 467 415 419
81. AltuviaSWeinstein-FischerDZhangAPostowLStorzG 1997 A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90 43 53
82. GottesmanSMcCullenCAGuillierMVanderpoolCKMajdalaniN 2006 Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol 71 1 11
83. LeungAKCalabreseJMSharpPA 2006 Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci U S A 103 18125 18130
84. LeungAKSharpPA 2006 Function and localization of microRNAs in mammalian cells. Cold Spring Harb Symp Quant Biol 71 29 38
85. PhillipsJRDalmayTBartelsD 2007 The role of small RNAs in abiotic stress. FEBS Lett 581 3592 3597
86. SunkarRChinnusamyVZhuJZhuJK 2007 Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12 301 309
87. SunkarRZhuJK 2004 Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16 2001 2019
88. ThomasJH 2006 Analysis of homologous gene clusters in Caenorhabditis elegans reveals striking regional cluster domains. Genetics 172 127 143
89. de LencastreAPincusZZhouKKatoMLeeSS 2010 MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 20 2159 2168
90. KirienkoNVFayDS 2010 SLR-2 and JMJC-1 regulate an evolutionarily conserved stress-response network. EMBO J 29 727 739
91. JenkinsNLMcCollGLithgowGJ 2004 Fitness cost of extended lifespan in Caenorhabditis elegans. Proc Biol Sci 271 2523 2526
92. HoogewijsDHouthoofdKMatthijssensFVandesompeleJVanfleterenJR 2008 Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC molecular biology 9 9
93. AitlhadjLSturzenbaumS 2010 The use of FUdR can cause prolonged longevity in mutant nematodes. Mechanisms of ageing and development 131 364 369
94. GruberJNgLPoovathingalSHalliwellB 2009 Deceptively simple but simply deceptive–Caenorhabditis elegans lifespan studies: considerations for aging and antioxidant effects. FEBS letters 583 3377 3464
95. HosonoR 1978 Sterilization and growth inhibition of Caenorhabditis elegans by 5-fluorodeoxyuridine. Experimental gerontology 13 369 374
96. MitchellDHStilesJWSantelliJSanadiDR 1979 Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. Journal of gerontology 34 28 36
97. Van RaamsdonkJHekimiS 2011 FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1. Mechanisms of ageing and development 132 519 540
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 7
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Guidelines for Genome-Wide Association Studies
- The Role of Rice HEI10 in the Formation of Meiotic Crossovers
- Identification of Chromatin-Associated Regulators of MSL Complex Targeting in Dosage Compensation
- GWAS Identifies Novel Susceptibility Loci on 6p21.32 and 21q21.3 for Hepatocellular Carcinoma in Chronic Hepatitis B Virus Carriers