#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Functional Analysis of the Interdependence between DNA Uptake Sequence and Its Cognate ComP Receptor during Natural Transformation in Species


Natural transformation is the widespread biological process by which “competent” bacteria take up free DNA, incorporate it into their genomes, and become genetically altered or “transformed”. To curb often deleterious transformation by foreign DNA, several competent species preferentially take up their own DNA that contains specific DUS (DNA uptake sequence) watermarks. Our recent finding that ComP is the long sought DUS receptor in Neisseria species paves the way for the functional analysis of the DUS-ComP interdependence which is reported here. By abolishing/modulating ComP levels in Neisseria meningitidis, we show that the enhancement of transformation seen in the presence of DUS is entirely dependent on ComP, which also controls transformation in the absence of DUS. While peripheral bases in the DUS were found to be less important, inner bases are essential since single base mutations led to dramatically impaired interaction with ComP and transformation. Strikingly, naturally occurring DUS variants in the genomes of human Neisseria commensals differing from DUS by only one or two bases were found to be similarly impaired for transformation of N. meningitidis. By showing that ComPsub from the N. subflava commensal specifically binds its cognate DUS variant and mediates DUS-enhanced transformation when expressed in a comP mutant of N. meningitidis, we confirm that a similar mechanism is used by all Neisseria species to promote transformation by their own, or closely related DNA. Together, these findings shed new light on the molecular events involved in the earliest step in natural transformation, and reveal an elegant mechanism for modulating horizontal gene transfer between competent species sharing the same niche.


Vyšlo v časopise: Functional Analysis of the Interdependence between DNA Uptake Sequence and Its Cognate ComP Receptor during Natural Transformation in Species. PLoS Genet 9(12): e32767. doi:10.1371/journal.pgen.1004014
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004014

Souhrn

Natural transformation is the widespread biological process by which “competent” bacteria take up free DNA, incorporate it into their genomes, and become genetically altered or “transformed”. To curb often deleterious transformation by foreign DNA, several competent species preferentially take up their own DNA that contains specific DUS (DNA uptake sequence) watermarks. Our recent finding that ComP is the long sought DUS receptor in Neisseria species paves the way for the functional analysis of the DUS-ComP interdependence which is reported here. By abolishing/modulating ComP levels in Neisseria meningitidis, we show that the enhancement of transformation seen in the presence of DUS is entirely dependent on ComP, which also controls transformation in the absence of DUS. While peripheral bases in the DUS were found to be less important, inner bases are essential since single base mutations led to dramatically impaired interaction with ComP and transformation. Strikingly, naturally occurring DUS variants in the genomes of human Neisseria commensals differing from DUS by only one or two bases were found to be similarly impaired for transformation of N. meningitidis. By showing that ComPsub from the N. subflava commensal specifically binds its cognate DUS variant and mediates DUS-enhanced transformation when expressed in a comP mutant of N. meningitidis, we confirm that a similar mechanism is used by all Neisseria species to promote transformation by their own, or closely related DNA. Together, these findings shed new light on the molecular events involved in the earliest step in natural transformation, and reveal an elegant mechanism for modulating horizontal gene transfer between competent species sharing the same niche.


Zdroje

1. JohnsborgO, EldholmV, HåvarsteinLS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158: 767–778.

2. RusniokC, VallenetD, FloquetS, EwlesH, Mouzé-SoulamaC, et al. (2009) NeMeSys: a resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis. Genome Biol 10: R110.

3. MarriPR, PaniscusM, WeyandNJ, RendonMA, CaltonCM, et al. (2010) Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 5: e11835.

4. KrollJS, WilksKE, FarrantJL, LangfordPR (1998) Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pahogens. Proc Natl Acad Sci USA 65: 12381–12385.

5. VirjiM (2009) Pathogenic Neisseriae: surface modulation, pathogenesis and infection control. Nat Rev Microbiol 7: 274–286.

6. GriffithF (1928) The significance of pneumococcal types. J Hyg (Lond) 27: 113–159.

7. AveryOT, MacLeodCM, McCartyM (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79: 137–158.

8. ChenI, DubnauD (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2: 241–249.

9. CehovinA, KrollJS, PelicicV (2011) Testing the vaccine potential of PilV, PilX and ComP, minor subunits of Neisseria meningitidis type IV pili. Vaccine 29: 6858–6865.

10. PelicicV (2008) Type IV pili: e pluribus unum? Mol Microbiol 68: 827–837.

11. MaierB, PotterL, SoM, LongCD, SeifertHS, et al. (2002) Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci USA 99: 16012–16017.

12. WolfgangM, LauerP, ParkHS, BrossayL, HébertJ, et al. (1998) PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29: 321–330.

13. MaierB, ChenI, DubnauD, SheetzMP (2004) DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nat Struct Mol Biol 11: 643–649.

14. InamineGS, DubnauD (1995) ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J Bacteriol 177: 3045–3051.

15. ChenI, GotschlichEC (2001) ComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity. J Bacteriol 183: 3160–3168.

16. DraskovicI, DubnauD (2005) Biogenesis of a putative channel protein, ComEC, required for DNA uptake: membrane topology, oligomerization and formation of disulphide bonds. Mol Microbiol 55: 881–896.

17. Londoño-VallejoJA, DubnauD (1994) Mutation of the putative nucleotide binding site of the Bacillus subtilis membrane protein ComFA abolishes the uptake of DNA during transformation. J Bacteriol 176: 4642–4645.

18. AmburOH, FryeSA, NilsenM, HovlandE, TønjumT (2012) Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis. PLoS One 7: e39742.

19. GoodmanSD, ScoccaJJ (1988) Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci USA 85: 6982–6986.

20. SmithHO, GwinnML, SalzbergSL (1999) DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol 150: 603–616.

21. AmburOH, FryeSA, TønjumT (2007) New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol 189: 2077–2085.

22. CehovinA, SimpsonPJ, McDowellMA, BrownDR, NoscheseR, et al. (2013) Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci USA 110: 3065–3070.

23. WolfgangM, van PuttenJP, HayesSF, KoomeyM (1999) The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol Microbiol 31: 1345–1357.

24. BrownD, HelaineS, CarbonnelleE, PelicicV (2010) Systematic functional analysis reveals that a set of 7 genes is involved in fine tuning of the multiple functions mediated by type IV pili in Neisseria meningitidis. Infect Immun 78: 3053–3063.

25. Tønjum T (2005) Family Neisseriaceae. In: Garrity GM, editor. Bergey's Manual of Systematic Bacteriology. 2nd ed. New York Springer Verlag pp. 775–776.

26. DuffinPM, SeifertHS (2010) DNA uptake sequence-mediated enhancement of transformation in Neisseria gonorrhoeae is strain dependent. J Bacteriol 192: 4436–4444.

27. AasFE, WolfgangM, FryeS, DunhamS, LøvoldC, et al. (2002) Competence for natural transformation in Neisseria gonorrhoeae: components of DNA binding and uptake linked to type IV pilus expression. Mol Microbiol 46: 749–760.

28. CarbonnelleE, HelaineS, NassifX, PelicicV (2006) A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61: 1510–1522.

29. GeorgiadouM, CastagniniM, KarimovaG, LadantD, PelicicV (2012) Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly. Mol Microbiol 84: 857–873.

30. BennettJS, JolleyKA, EarleSG, CortonC, BentleySD, et al. (2012) A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 158: 1570–1580.

31. AasFE, LøvoldC, KoomeyM (2002) An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to type IV pilus expression. Molecular Microbiology 46: 1441–1450.

32. SinhaS, MellJC, RedfieldRJ (2012) Seventeen Sxy-dependent cyclic AMP receptor protein site-regulated genes are needed for natural transformation in Haemophilus influenzae. J Bacteriol 194: 5245–5254.

33. FryeSA, NilsenM, TønjumT, AmburOH (2013) Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet 9: e1003458.

34. TinsleyCR, VoulhouxR, BerettiJL, TommassenJ, NassifX (2004) Three homologues, including two membrane-bound proteins, of the disulphide oxidoreductase DsbA in Neisseria meningitidis: effects on bacterial growth and biogenesis of functional type IV pili. J Biol Chem 279: 27078–27087.

35. InoueH, NojimaH, OkayamaH (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23–28.

36. DereeperA, GuignonV, BlancG, AudicS, BuffetS, et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36: W465–469.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#