#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation, and Autoantibody Production


Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with a strong genetic component. African-Americans (AA) are at increased risk of SLE, but the genetic basis of this risk is largely unknown. To identify causal variants in SLE loci in AA, we performed admixture mapping followed by fine mapping in AA and European-Americans (EA). Through genome-wide admixture mapping in AA, we identified a strong SLE susceptibility locus at 2q22–24 (LOD = 6.28), and the admixture signal is associated with the European ancestry (ancestry risk ratio ∼1.5). Large-scale genotypic analysis on 19,726 individuals of African and European ancestry revealed three independently associated variants in the IFIH1 gene: an intronic variant, rs13023380 [Pmeta = 5.20×10−14; odds ratio, 95% confidence interval = 0.82 (0.78–0.87)], and two missense variants, rs1990760 (Ala946Thr) [Pmeta = 3.08×10−7; 0.88 (0.84–0.93)] and rs10930046 (Arg460His) [Pdom = 1.16×10−8; 0.70 (0.62–0.79)]. Both missense variants produced dramatic phenotypic changes in apoptosis and inflammation-related gene expression. We experimentally validated function of the intronic SNP by DNA electrophoresis, protein identification, and in vitro protein binding assays. DNA carrying the intronic risk allele rs13023380 showed reduced binding efficiency to a cellular protein complex including nucleolin and lupus autoantigen Ku70/80, and showed reduced transcriptional activity in vivo. Thus, in SLE patients, genetic susceptibility could create a biochemical imbalance that dysregulates nucleolin, Ku70/80, or other nucleic acid regulatory proteins. This could promote antibody hypermutation and auto-antibody generation, further destabilizing the cellular network. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.


Vyšlo v časopise: Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation, and Autoantibody Production. PLoS Genet 9(2): e32767. doi:10.1371/journal.pgen.1003222
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003222

Souhrn

Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with a strong genetic component. African-Americans (AA) are at increased risk of SLE, but the genetic basis of this risk is largely unknown. To identify causal variants in SLE loci in AA, we performed admixture mapping followed by fine mapping in AA and European-Americans (EA). Through genome-wide admixture mapping in AA, we identified a strong SLE susceptibility locus at 2q22–24 (LOD = 6.28), and the admixture signal is associated with the European ancestry (ancestry risk ratio ∼1.5). Large-scale genotypic analysis on 19,726 individuals of African and European ancestry revealed three independently associated variants in the IFIH1 gene: an intronic variant, rs13023380 [Pmeta = 5.20×10−14; odds ratio, 95% confidence interval = 0.82 (0.78–0.87)], and two missense variants, rs1990760 (Ala946Thr) [Pmeta = 3.08×10−7; 0.88 (0.84–0.93)] and rs10930046 (Arg460His) [Pdom = 1.16×10−8; 0.70 (0.62–0.79)]. Both missense variants produced dramatic phenotypic changes in apoptosis and inflammation-related gene expression. We experimentally validated function of the intronic SNP by DNA electrophoresis, protein identification, and in vitro protein binding assays. DNA carrying the intronic risk allele rs13023380 showed reduced binding efficiency to a cellular protein complex including nucleolin and lupus autoantigen Ku70/80, and showed reduced transcriptional activity in vivo. Thus, in SLE patients, genetic susceptibility could create a biochemical imbalance that dysregulates nucleolin, Ku70/80, or other nucleic acid regulatory proteins. This could promote antibody hypermutation and auto-antibody generation, further destabilizing the cellular network. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.


Zdroje

1. HelmickCG, FelsonDT, LawrenceRC, GabrielS, HirschR, et al. (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 58: 15–25.

2. ChakrabortyR, WeissKM (1988) Admixture as a Tool for Finding Linked Genes and Detecting That Difference from Allelic Association between Loci. Proceedings of the National Academy of Sciences of the United States of America 85: 9119–9123.

3. ReichD, PattersonN (2005) Will admixture mapping work to find disease genes? Philos Trans R Soc Lond B Biol Sci 360: 1605–1607.

4. SeldinMF (2007) Admixture mapping as a tool in gene discovery. Curr Opin Genet Dev 17: 177–181.

5. WinklerCA, NelsonGW, SmithMW (2010) Admixture mapping comes of age. Annu Rev Genomics Hum Genet 11: 65–89.

6. HoggartCJ, ShriverMD, KittlesRA, ClaytonDG, McKeiguePM (2004) Design and analysis of admixture mapping studies. Am J Hum Genet 74: 965–978.

7. PattersonN, HattangadiN, LaneB, LohmuellerKE, HaflerDA, et al. (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74: 979–1000.

8. MontanaG, PritchardJK (2004) Statistical tests for admixture mapping with case-control and cases-only data. American journal of human genetics 75: 771–789.

9. SeldinMF, PasaniucB, PriceAL (2011) New approaches to disease mapping in admixed populations. Nat Rev Genet 12: 523–528.

10. KaoWHL, KlagMJ, MeoniLA, ReichD, Berthier-SchaadY, et al. (2008) MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nature Genetics 40: 1185–1192.

11. FejermanL, ChenGK, EngC, HuntsmanS, HuDL, et al. (2012) Admixture mapping identifies a locus on 6q25 associated with breast cancer risk in US Latinas. Human Molecular Genetics 21: 1907–1917.

12. FreedmanML, HaimanCA, PattersonN, McDonaldGJ, TandonA, et al. (2006) Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci U S A 103: 14068–14073.

13. HinchAG, TandonA, PattersonN, SongY, RohlandN, et al. (2011) The landscape of recombination in African Americans. Nature 476: 170–175.

14. GabrielSB, SchaffnerSF, NguyenH, MooreJM, RoyJ, et al. (2002) The structure of haplotype blocks in the human genome. Science 296: 2225–2229.

15. PritchardJK, StephensM, DonnellyP (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

16. SmythDJ, CooperJD, BaileyR, FieldS, BurrenO, et al. (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nature genetics 38: 617–619.

17. SutherlandA, DaviesJ, OwenCJ, VaikkakaraS, WalkerC, et al. (2007) Genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves' disease susceptibility. J Clin Endocrinol Metab 92: 3338–3341.

18. FerreiraRC, Pan-HammarstromQ, GrahamRR, GatevaV, FontanG, et al. (2010) Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet 42: 777–780.

19. NejentsevS, WalkerN, RichesD, EgholmM, ToddJA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324: 387–389.

20. Cunninghame GrahamDS, MorrisDL, BhangaleTR, CriswellLA, SyvanenAC, et al. (2011) Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet 7: e1002341 doi:10.1371/journal.pgen.1002341.

21. BruzziP, GreenSB, ByarDP, BrintonLA, SchairerC (1985) Estimating the population attributable risk for multiple risk factors using case-control data. Am J Epidemiol 122: 904–914.

22. LiY, WillerCJ, DingJ, ScheetP, AbecasisGR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol

23. FumagalliM, CaglianiR, RivaS, PozzoliU, BiasinM, et al. (2010) Population Genetics of IFIH1: Ancient Population Structure, Local Selection, and Implications for Susceptibility to Type 1 Diabetes. Molecular Biology and Evolution 27: 2555–2566.

24. KatoH, TakeuchiO, SatoS, YoneyamaM, YamamotoM, et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101–105.

25. LinL, SuZ, LebedevaIV, GuptaP, BoukercheH, et al. (2006) Activation of Ras/Raf protects cells from melanoma differentiation-associated gene-5-induced apoptosis. Cell death and differentiation 13: 1982–1993.

26. KangDC, GopalkrishnanRV, LinL, RandolphA, ValerieK, et al. (2004) Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-inducing gene. Oncogene 23: 1789–1800.

27. JiangF, RamanathanA, MillerMT, TangGQ, GaleMJr, et al. (2011) Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479: 423–427.

28. van BavelCC, DiekerJW, KroezeY, TamboerWP, VollR, et al. (2011) Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Annals of the Rheumatic Diseases 70: 201–207.

29. RobinsonT, KariukiSN, FranekBS, KumabeM, KumarAA, et al. (2011) Autoimmune Disease Risk Variant of IFIH1 Is Associated with Increased Sensitivity to IFN-{alpha} and Serologic Autoimmunity in Lupus Patients. Journal of immunology 187: 1298–1303.

30. YuCY, ChiangRL, ChangTH, LiaoCL, LinYL (2010) The interferon stimulator mitochondrial antiviral signaling protein facilitates cell death by disrupting the mitochondrial membrane potential and by activating caspases. J Virol 84: 2421–2431.

31. MukherjeeA, MoroskySA, Delorme-AxfordE, Dybdahl-SissokoN, ObersteMS, et al. (2011) The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog 7: e1001311 doi:10.1371/journal.ppat.1001311.

32. DownesK, PekalskiM, AngusKL, HardyM, NutlandS, et al. (2010) Reduced expression of IFIH1 is protective for type 1 diabetes. PLoS ONE 5: e12646 doi:10.1371/journal.pone.0012646.

33. KumarH, KawaiT, AkiraS (2009) Pathogen recognition in the innate immune response. Biochem J 420: 1–16.

34. TamassiaN, Le MoigneV, RossatoM, DoniniM, McCartneyS, et al. (2008) Activation of an immunoregulatory and antiviral gene expression program in poly(I∶C)-transfected human neutrophils. Journal of immunology 181: 6563–6573.

35. GerardinJA, BaiseEA, PireGA, LeroyMP, DesmechtDJ (2004) Genomic structure, organisation, and promoter analysis of the bovine (Bos taurus) Mx1 gene. Gene 326: 67–75.

36. WeckerleCE, FranekBS, KellyJA, KumabeM, MikolaitisRA, et al. (2011) Network analysis of associations between serum interferon-alpha activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis and rheumatism 63: 1044–1053.

37. MinotaS, JarjourWN, SuzukiN, NojimaY, RoubeyRA, et al. (1991) Autoantibodies to nucleolin in systemic lupus erythematosus and other diseases. Journal of immunology 146: 2249–2252.

38. RoutsiasJG, TzioufasAG, MoutsopoulosHM (2004) The clinical value of intracellular autoantigens B-cell epitopes in systemic rheumatic diseases. Clinica chimica acta; international journal of clinical chemistry 340: 1–25.

39. CuiS, EisenacherK, KirchhoferA, BrzozkaK, LammensA, et al. (2008) The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell 29: 169–179.

40. Ghisolfi-NietoL, JosephG, Puvion-DutilleulF, AmalricF, BouvetP (1996) Nucleolin is a sequence-specific RNA-binding protein: characterization of targets on pre-ribosomal RNA. Journal of molecular biology 260: 34–53.

41. AminkengF, Van AutreveJE, WeetsI, QuartierE, Van SchravendijkC, et al. (2009) IFIH1 gene polymorphisms in type 1 diabetes: genetic association analysis and genotype-phenotype correlation in the Belgian population. Hum Immunol 70: 706–710.

42. GatevaV, SandlingJK, HomG, TaylorKE, ChungSA, et al. (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41: 1228–1233.

43. LiY, LiaoW, CargillM, ChangM, MatsunamiN, et al. (2010) Carriers of rare missense variants in IFIH1 are protected from psoriasis. The Journal of investigative dermatology 130: 2768–2772.

44. BaechlerEC, BatliwallaFM, KarypisG, GaffneyPM, OrtmannWA, et al. (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100: 2610–2615.

45. ZhuL, YangX, ChenW, LiX, JiY, et al. (2007) Decreased expressions of the TNF-alpha signaling adapters in peripheral blood mononuclear cells (PBMCs) are correlated with disease activity in patients with systemic lupus erythematosus. Clin Rheumatol 26: 1481–1489.

46. BoucheG, Caizergues-FerrerM, BuglerB, AmalricF (1984) Interrelations between the maturation of a 100 kDa nucleolar protein and pre rRNA synthesis in CHO cells. Nucleic acids research 12: 3025–3035.

47. HanakahiLA, DempseyLA, LiMJ, MaizelsN (1997) Nucleolin is one component of the B cell-specific transcription factor and switch region binding protein, LR1. Proceedings of the National Academy of Sciences of the United States of America 94: 3605–3610.

48. MirandaGA, ChoklerI, AguileraRJ (1995) The murine nucleolin protein is an inducible DNA and ATP binding protein which is readily detected in nuclear extracts of lipopolysaccharide-treated splenocytes. Exp Cell Res 217: 294–308.

49. OkuyaK, TamuraY, SaitoK, KutomiG, TorigoeT, et al. (2010) Spatiotemporal regulation of heat shock protein 90-chaperoned self-DNA and CpG-oligodeoxynucleotide for type I IFN induction via targeting to static early endosome. Journal of immunology 184: 7092–7099.

50. DickinsonLA, Kohwi-ShigematsuT (1995) Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential. Mol Cell Biol 15: 456–465.

51. KotnisA, DuL, LiuC, PopovSW, Pan-HammarstromQ (2009) Non-homologous end joining in class switch recombination: the beginning of the end. Philos Trans R Soc Lond B Biol Sci 364: 653–665.

52. KrackerS, ImaiK, GardesP, OchsHD, FischerA, et al. (2010) Impaired induction of DNA lesions during immunoglobulin class-switch recombination in humans influences end-joining repair. Proceedings of the National Academy of Sciences of the United States of America 107: 22225–22230.

53. VasseurE, PatinE, LavalG, PajonS, FornarinoS, et al. (2011) The selective footprints of viral pressures at the human RIG-I-like receptor family. Human molecular genetics 20: 4462–4474.

54. PolychronakosC (2011) Fine points in mapping autoimmunity. Nature genetics 43: 1173–1174.

55. HochbergMC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40: 1725.

56. TanEM, CohenAS, FriesJF, MasiAT, McShaneDJ, et al. (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25: 1271–1277.

57. MailmanMD, FeoloM, JinY, KimuraM, TrykaK, et al. (2007) The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 39: 1181–1186.

58. PattersonN, PriceAL, ReichD (2006) Population structure and eigenanalysis. PLoS Genet 2: e190 doi:10.1371/journal.pgen.0020190.

59. PritchardJK, RosenbergNA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65: 220–228.

60. PurcellS, NealeB, Todd-BrownK, ThomasL, FerreiraMA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575.

61. YangJ, LeeSH, GoddardME, VisscherPM (2011) GCTA: a tool for genome-wide complex trait analysis. American journal of human genetics 88: 76–82.

62. SmithMW, PattersonN, LautenbergerJA, TrueloveAL, McDonaldGJ, et al. (2004) A high-density admixture map for disease gene discovery in african americans. Am J Hum Genet 74: 1001–1013.

63. ConsortiumTIH (2003) The International HapMap Project. Nature 426: 789–796.

64. EvannoG, RegnautS, GoudetJ (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620.

65. Brisbin AG (2010) Linkage analysis for categorical traits and ancestry assignment in admixed individuals.

66. BrowningSR, BrowningBL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. American journal of human genetics 81: 1084–1097.

67. WeirBS, CardonLR, AndersonAD, NielsenDM, HillWG (2005) Measures of human population structure show heterogeneity among genomic regions. Genome Res 15: 1468–1476.

68. ExcoffierL, LischerHE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources 10: 564–567.

69. RockhillB, NewmanB, WeinbergC (1998) Use and misuse of population attributable fractions. American Journal of Public Health 88: 15–19.

70. ScheetP, StephensM (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78: 629–644.

71. LiY, WillerC, SannaS, AbecasisG (2009) Genotype imputation. Annual review of genomics and human genetics 10: 387–406.

72. PurcellS, DalyMJ, ShamPC (2007) WHAP: haplotype-based association analysis. Bioinformatics 23: 255–256.

73. CoffeyCS, HebertPR, RitchieMD, KrumholzHM, GazianoJM, et al. (2004) An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene-gene interactions on risk of myocardial infarction: the importance of model validation. BMC Bioinformatics 5: 49.

74. LamFC, LongneckerMT (1983) A Modified Wilcoxon Rank Sum Test for Paired Data. Biometrika 70: 510–513.

75. AltschulSF, MaddenTL, SchafferAA, ZhangJH, ZhangZ, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 25: 3389–3402.

76. LarkinMA, BlackshieldsG, BrownNP, ChennaR, McGettiganPA, et al. (2007) Clustal W and clustal X version 2.0. Bioinformatics 23: 2947–2948.

77. SatoK, HamadaM, AsaiK, MituyamaT (2009) CENTROIDFOLD: a web server for RNA secondary structure prediction. Nucleic acids research 37: W277–W280.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#