#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Dynamic Circadian Protein–Protein Interaction Networks Predict Temporal Organization of Cellular Functions


Essentially all biological processes depend on protein–protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (∼24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner.


Vyšlo v časopise: Dynamic Circadian Protein–Protein Interaction Networks Predict Temporal Organization of Cellular Functions. PLoS Genet 9(3): e32767. doi:10.1371/journal.pgen.1003398
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003398

Souhrn

Essentially all biological processes depend on protein–protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (∼24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner.


Zdroje

1. ReppertSM, WeaverDR (2002) Coordination of circadian timing in mammals. Nature 418: 935–941.

2. GallegoM, VirshupDM (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8: 139–148.

3. ZhangEE, KaySA (2010) Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 11: 764–776.

4. GekakisN, StaknisD, NguyenHB, DavisFC, WilsbacherLD, et al. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280: 1564–1569.

5. LeeC, EtchegarayJP, CagampangFR, LoudonAS, ReppertSM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107: 855–867.

6. HughesME, DiTacchioL, HayesKR, VollmersC, PulivarthyS, et al. (2009) Harmonics of circadian gene transcription in mammals. PLoS Genet 5: e1000442 doi:10.1371/journal.pgen.1000442.

7. PandaS, AntochMP, MillerBH, SuAI, SchookAB, et al. (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109: 307–320.

8. ReddyAB, KarpNA, MaywoodES, SageEA, DeeryM, et al. (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16: 1107–1115.

9. HofmannKP, SpahnCM, HeinrichR, HeinemannU (2006) Building functional modules from molecular interactions. Trends Biochem Sci 31: 497–508.

10. StelzlU, WormU, LalowskiM, HaenigC, BrembeckFH, et al. (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122: 957–968.

11. BraunP, TasanM, DrezeM, Barrios-RodilesM, LemmensI, et al. (2009) An experimentally derived confidence score for binary protein–protein interactions. Nat Methods 6: 91–97.

12. ChaurasiaG, IqbalY, HanigC, HerzelH, WankerEE, et al. (2007) UniHI: an entry gate to the human protein interactome. Nucleic Acids Res 35: D590–594.

13. StrogatzSH (2001) Exploring complex networks. Nature 410: 268–276.

14. BarabasiAL, OltvaiZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5: 101–113.

15. MaierB, WendtS, VanselowJT, WallachT, ReischlS, et al. (2009) A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev 23: 708–718.

16. ZhangEE, LiuAC, HirotaT, MiragliaLJ, WelchG, et al. (2009) A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 139: 199–210.

17. SchwanhausserB, BusseD, LiN, DittmarG, SchuchhardtJ, et al. (2011) Global quantification of mammalian gene expression control. Nature 473: 337–342.

18. HanJD, BertinN, HaoT, GoldbergDS, BerrizGF, et al. (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430: 88–93.

19. StorchKF, LipanO, LeykinI, ViswanathanN, DavisFC, et al. (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417: 78–83.

20. HahnMW, KernAD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22: 803–806.

21. KatadaS, Sassone-CorsiP (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17: 1414–1421.

22. BrownSA, RippergerJ, KadenerS, Fleury-OlelaF, VilboisF, et al. (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308: 693–696.

23. ReyG, CesbronF, RougemontJ, ReinkeH, BrunnerM, et al. (2011) Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9: e1000595 doi:10.1371/journal.pbio.1000595.

24. DiTacchioL, LeHD, VollmersC, HatoriM, WitcherM, et al. (2011) Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333: 1881–1885.

25. DuongHA, RoblesMS, KnuttiD, WeitzCJ (2011) A molecular mechanism for circadian clock negative feedback. Science 332: 1436–1439.

26. HonmaS, KawamotoT, TakagiY, FujimotoK, SatoF, et al. (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419: 841–844.

27. ZhaoWN, MalininN, YangFC, StaknisD, GekakisN, et al. (2007) CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat Cell Biol 9: 268–275.

28. KondratovRV, ChernovMV, KondratovaAA, GorbachevaVY, GudkovAV, et al. (2003) BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev 17: 1921–1932.

29. YoshitaneH, TakaoT, SatomiY, DuNH, OkanoT, et al. (2009) Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription. Mol Cell Biol 29: 3675–3686.

30. YenHC, ElledgeSJ (2008) Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science 322: 923–929.

31. YenHC, XuQ, ChouDM, ZhaoZ, ElledgeSJ (2008) Global protein stability profiling in mammalian cells. Science 322: 918–923.

32. SaharS, ZocchiL, KinoshitaC, BorrelliE, Sassone-CorsiP (2010) Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS ONE 5: e8561 doi:10.1371/journal.pone.0008561.

33. AsherG, GatfieldD, StratmannM, ReinkeH, DibnerC, et al. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317–328.

34. RoblesMS, BoyaultC, KnuttiD, PadmanabhanK, WeitzCJ (2010) Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science 327: 463–466.

35. StelzlU, WankerEE (2006) The value of high quality protein–protein interaction networks for systems biology. Curr Opin Chem Biol 10: 551–558.

36. ReischlS, KramerA (2011) Kinases and phosphatases in the mammalian circadian clock. FEBS Lett 585: 1393–1399.

37. LeeHM, ChenR, KimH, EtchegarayJP, WeaverDR, et al. (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci U S A 108: 16451–16456.

38. SchmutzI, WendtS, SchnellA, KramerA, MansuyIM, et al. (2011) Protein phosphatase 1 (PP1) is a post-translational regulator of the mammalian circadian clock. PLoS ONE 6: e21325 doi:10.1371/journal.pone.0021325.

39. de LichtenbergU, JensenLJ, BrunakS, BorkP (2005) Dynamic complex formation during the yeast cell cycle. Science 307: 724–727.

40. AtwoodA, DeCondeR, WangSS, MocklerTC, SabirJS, et al. (2011) Cell-autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis. Proc Natl Acad Sci U S A 108: 18560–18565.

41. LundbergE, FagerbergL, KlevebringD, MaticI, GeigerT, et al. (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol 6: 450.

42. VogelC, Abreu RdeS, KoD, LeSY, ShapiroBA, et al. (2010) Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6: 400.

43. GoehlerH, LalowskiM, StelzlU, WaelterS, StroedickeM, et al. (2004) A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol Cell 15: 853–865.

44. FutschikME, HerzelH (2008) Are we overestimating the number of cell-cycling genes? The impact of background models on time-series analysis. Bioinformatics 24: 1063–1069.

45. ChaurasiaG, MalhotraS, RussJ, SchnoeglS, HanigC, et al. (2009) UniHI 4: new tools for query, analysis and visualization of the human protein–protein interactome. Nucleic Acids Res 37: D657–660.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#