#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

TDP2–Dependent Non-Homologous End-Joining Protects against Topoisomerase II–Induced DNA Breaks and Genome Instability in Cells and


Anticancer topoisomerase “poisons” exploit the break-and-rejoining mechanism of topoisomerase II (TOP2) to generate TOP2-linked DNA double-strand breaks (DSBs). This characteristic underlies the clinical efficacy of TOP2 poisons, but is also implicated in chromosomal translocations and genome instability associated with secondary, treatment-related, haematological malignancy. Despite this relevance for cancer therapy, the mechanistic aspects governing repair of TOP2-induced DSBs and the physiological consequences that absent or aberrant repair can have are still poorly understood. To address these deficits, we employed cells and mice lacking tyrosyl DNA phosphodiesterase 2 (TDP2), an enzyme that hydrolyses 5′-phosphotyrosyl bonds at TOP2-associated DSBs, and studied their response to TOP2 poisons. Our results demonstrate that TDP2 functions in non-homologous end-joining (NHEJ) and liberates DSB termini that are competent for ligation. Moreover, we show that the absence of TDP2 in cells impairs not only the capacity to repair TOP2-induced DSBs but also the accuracy of the process, thus compromising genome integrity. Most importantly, we find this TDP2-dependent NHEJ mechanism to be physiologically relevant, as Tdp2-deleted mice are sensitive to TOP2-induced damage, displaying marked lymphoid toxicity, severe intestinal damage, and increased genome instability in the bone marrow. Collectively, our data reveal TDP2-mediated error-free NHEJ as an efficient and accurate mechanism to repair TOP2-induced DSBs. Given the widespread use of TOP2 poisons in cancer chemotherapy, this raises the possibility of TDP2 being an important etiological factor in the response of tumours to this type of agent and in the development of treatment-related malignancy.


Vyšlo v časopise: TDP2–Dependent Non-Homologous End-Joining Protects against Topoisomerase II–Induced DNA Breaks and Genome Instability in Cells and. PLoS Genet 9(3): e32767. doi:10.1371/journal.pgen.1003226
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003226

Souhrn

Anticancer topoisomerase “poisons” exploit the break-and-rejoining mechanism of topoisomerase II (TOP2) to generate TOP2-linked DNA double-strand breaks (DSBs). This characteristic underlies the clinical efficacy of TOP2 poisons, but is also implicated in chromosomal translocations and genome instability associated with secondary, treatment-related, haematological malignancy. Despite this relevance for cancer therapy, the mechanistic aspects governing repair of TOP2-induced DSBs and the physiological consequences that absent or aberrant repair can have are still poorly understood. To address these deficits, we employed cells and mice lacking tyrosyl DNA phosphodiesterase 2 (TDP2), an enzyme that hydrolyses 5′-phosphotyrosyl bonds at TOP2-associated DSBs, and studied their response to TOP2 poisons. Our results demonstrate that TDP2 functions in non-homologous end-joining (NHEJ) and liberates DSB termini that are competent for ligation. Moreover, we show that the absence of TDP2 in cells impairs not only the capacity to repair TOP2-induced DSBs but also the accuracy of the process, thus compromising genome integrity. Most importantly, we find this TDP2-dependent NHEJ mechanism to be physiologically relevant, as Tdp2-deleted mice are sensitive to TOP2-induced damage, displaying marked lymphoid toxicity, severe intestinal damage, and increased genome instability in the bone marrow. Collectively, our data reveal TDP2-mediated error-free NHEJ as an efficient and accurate mechanism to repair TOP2-induced DSBs. Given the widespread use of TOP2 poisons in cancer chemotherapy, this raises the possibility of TDP2 being an important etiological factor in the response of tumours to this type of agent and in the development of treatment-related malignancy.


Zdroje

1. ChampouxJJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70: 369–413 doi:10.1146/annurev.biochem.70.1.369.

2. WangJC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3: 430–440 doi:10.1038/nrm831.

3. NitissJL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9: 327–337 doi:10.1038/nrc2608.

4. DeweeseJE, OsheroffN (2009) The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Res 37: 738–748 doi:10.1093/nar/gkn937.

5. NitissJL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9: 338–350 doi:10.1038/nrc2607.

6. AndersonRD, BergerNA (1994) International Commission for Protection Against Environmental Mutagens and Carcinogens. Mutagenicity and carcinogenicity of topoisomerase-interactive agents. Mutat Res 309: 109–142.

7. FelixCA, KolarisCP, OsheroffN (2006) Topoisomerase II and the etiology of chromosomal translocations. DNA Repair (Amst) 5: 1093–1108 doi:10.1016/j.dnarep.2006.05.031.

8. PovirkLF (2006) Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair (Amst) 5: 1199–1212 doi:10.1016/j.dnarep.2006.05.016.

9. AlbainKS, Le BeauMM, UllirschR, SchumacherH (1990) Implication of prior treatment with drug combinations including inhibitors of topoisomerase II in therapy-related monocytic leukemia with a 9;11 translocation. Gene Chromosome Canc 2: 53–58.

10. AhujaHG, FelixCA, AplanPD (2000) Potential role for DNA topoisomerase II poisons in the generation of t(11;20)(p15;q11) translocations. Gene Chromosome Canc 29: 96–105.

11. AndersenMK, ChristiansenDH, JensenBA, ErnstP, HaugeG, et al. (2001) Therapy-related acute lymphoblastic leukaemia with MLL rearrangements following DNA topoisomerase II inhibitors, an increasing problem: report on two new cases and review of the literature since 1992. Br J Haematol 114: 539–543.

12. LovettBD, Lo NigroL, RappaportEF, BlairIA, OsheroffN, et al. (2001) Near-precise interchromosomal recombination and functional DNA topoisomerase II cleavage sites at MLL and AF-4 genomic breakpoints in treatment-related acute lymphoblastic leukemia with t(4;11) translocation. Proc Natl Acad Sci USA 98: 9802–9807 doi:10.1073/pnas.171309898.

13. WhitmarshRJ, SaginarioC, ZhuoY, HilgenfeldE, RappaportEF, et al. (2003) Reciprocal DNA topoisomerase II cleavage events at 5“-TATTA-3” sequences in MLL and AF-9 create homologous single-stranded overhangs that anneal to form der(11) and der(9) genomic breakpoint junctions in treatment-related AML without further processing. Oncogene 22: 8448–8459 doi:10.1038/sj.onc.1207052.

14. MistryAR, FelixCA, WhitmarshRJ, MasonA, ReiterA, et al. (2005) DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 352: 1529–1538 doi:10.1056/NEJMoa042715.

15. GiguèreA, HébertJ (2011) Microhomologies and topoisomerase II consensus sequences identified near the breakpoint junctions of the recurrent t(7;21)(p22;q22) translocation in acute myeloid leukemia. Gene Chromosome Canc 50: 228–238 doi:10.1002/gcc.20848.

16. LeH, SinghS, ShihS-J, DuN, SchnyderS, et al. (2009) Rearrangements of the MLL gene are influenced by DNA secondary structure, potentially mediated by topoisomerase II binding. Gene Chromosome Canc 48: 806–815 doi:10.1002/gcc.20685.

17. MiraultM-E, BoucherP, TremblayA (2006) Nucleotide-resolution mapping of topoisomerase-mediated and apoptotic DNA strand scissions at or near an MLL translocation hotspot. Am J Hum Genet 79: 779–791 doi:10.1086/507791.

18. ConnellyJC, LeachDRF (2004) Repair of DNA covalently linked to protein. Mol Cell 13: 307–316.

19. KurosawaA, KoyamaH, TakayamaS, MikiK, AyusawaD, et al. (2008) The requirement of Artemis in double-strand break repair depends on the type of DNA damage. DNA Cell Biol 27: 55–61 doi:10.1089/dna.2007.0649.

20. SartoriAA, LukasC, CoatesJ, MistrikM, FuS, et al. (2007) Human CtIP promotes DNA end resection. Nature 450: 509–514 doi:10.1038/nature06337.

21. QuennetV, BeucherA, BartonO, TakedaS, LöbrichM (2011) CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1. Nucleic Acids Res 39: 2144–2152 doi:10.1093/nar/gkq1175.

22. Cortes LedesmaF, Khamisy ElSF, ZumaMC, OsbornK, CaldecottKW (2009) A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 461: 674–678 doi:10.1038/nature08444.

23. PypeS, DeclercqW, IbrahimiA, MichielsC, Van RietschotenJG, et al. (2000) TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation. J Biol Chem 275: 18586–18593 doi:10.1074/jbc.M000531200.

24. PeiH, YordyJS, LengQ, ZhaoQ, WatsonDK, et al. (2003) EAPII interacts with ETS1 and modulates its transcriptional function. Oncogene 22: 2699–2709 doi:10.1038/sj.onc.1206374.

25. ZengZ, Cortes LedesmaF, Khamisy ElSF, CaldecottKW (2011) TDP2/TTRAP is the major 5′-tyrosyl DNA phosphodiesterase activity in vertebrate cells and is critical for cellular resistance to topoisomerase II-induced DNA damage. J Biol Chem 286: 403–409 doi:10.1074/jbc.M110.181016.

26. ShrivastavM, De HaroLP, NickoloffJA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18: 134–147 doi:10.1038/cr.2007.111.

27. MuraiJ, HuangS-YN, DasBB, DexheimerTS, TakedaS, et al. (2012) Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damage induced by topoisomerases I and II and base alkylation in vertebrate cells. J Biol Chem 287: 12848–12857 doi:10.1074/jbc.M111.333963.

28. BaumannP, WestSC (1998) DNA end-joining catalyzed by human cell-free extracts. Proc Natl Acad Sci USA 95: 14066–14070.

29. LöbrichM, ShibataA, BeucherA, FisherA, EnsmingerM, et al. (2010) gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9: 662–669.

30. HuertasP (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17: 11–16 doi:10.1038/nsmb.1710.

31. SonodaE, SasakiMS, MorrisonC, Yamaguchi-IwaiY, TakataM, et al. (1999) Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol Cell Biol 19: 5166–5169.

32. TakahashiN, KadotaT, KawanoS, IshikawaK, KuroyanagiK, et al. (1986) [Toxicity studies of VP 16-213 (I)–Acute toxicity in mice, rats and rabbits]. J Toxicol Sci 11 Suppl 1: 1–16.

33. LiC, SunS-Y, KhuriFR, LiR (2011) Pleiotropic functions of EAPII/TTRAP/TDP2: cancer development, chemoresistance and beyond. Cell Cycle 10: 3274–3283 doi:10.4161/cc.10.19.17763.

34. BarthelmesHU, HabermeyerM, ChristensenMO, MielkeC, InterthalH, et al. (2004) TDP1 overexpression in human cells counteracts DNA damage mediated by topoisomerases I and II. J Biol Chem 279: 55618–55625 doi:10.1074/jbc.M405042200.

35. NitissKC, MalikM, HeX, WhiteSW, NitissJL (2006) Tyrosyl-DNA phosphodiesterase (Tdp1) participates in the repair of TOP2–mediated DNA damage. Proc Natl Acad Sci USA 103: 8953–8958 doi:10.1073/pnas.0603455103.

36. ZengZ, SharmaA, JuL, MuraiJ, UmansL, et al. (2012) TDP2 promotes repair of topoisomerase I-mediated DNA damage in the absence of TDP1. Nucleic Acids Res doi:10.1093/nar/gks622.

37. SymingtonLS, GautierJ (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247–271 doi:10.1146/annurev-genet-110410-132435.

38. de Campos-NebelM, LarripaI, González-CidM (2010) Topoisomerase II-mediated DNA damage is differently repaired during the cell cycle by non-homologous end joining and homologous recombination. PLoS ONE 5: e12541 doi:10.1371/journal.pone.0012541.

39. LiGC, OuyangH, LiX, NagasawaH, LittleJB, et al. (1998) Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 2: 1–8.

40. PierceAJ, HuP, HanM, EllisN, JasinM (2001) Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 15: 3237–3242 doi:10.1101/gad.946401.

41. SaintignyY, DelacôteF, BoucherD, AverbeckD, LopezBS (2007) XRCC4 in G1 suppresses homologous recombination in S/G2, in G1 checkpoint-defective cells. Oncogene 26: 2769–2780 doi:10.1038/sj.onc.1210075.

42. Cortes Ledesma F, Prado F, Aguilera A (2007) Sister chromatid recombination. In: Aguilera A, Rothstein R, editors. Top Curr Genet 17 (Molecular Genetics of Recombination). Berlin Heidelberg: Springer-Verlag. pp. 363–380.

43. LiC, FanS, OwonikokoTK, KhuriFR, SunS-Y, et al. (2011) Oncogenic role of EAPII in lung cancer development and its activation of the MAPK-ERK pathway. Oncogene 30: 3802–3812 doi:10.1038/onc.2011.94.

44. DoPM, VaranasiL, FanS, LiC, KubackaI, et al. (2012) Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev 26: 830–845 doi:10.1101/gad.181685.111.

45. WolffSN, HainsworthJD, GrecoFA (2008) High-dose etoposide: from phase I to a component of curative therapy. J Clin Oncol 26: 5310–5312 doi:10.1200/JCO.2008.19.0892.

46. LangerT, MetzlerM, ReinhardtD, ViehmannS, BorkhardtA, et al. (2003) Analysis of t(9;11) chromosomal breakpoint sequences in childhood acute leukemia: almost identical MLL breakpoints in therapy-related AML after treatment without etoposides. Gene Chromosome Canc 36: 393–401 doi:10.1002/gcc.10167.

47. HaffnerMC, AryeeMJ, ToubajiA, EsopiDM, AlbadineR, et al. (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42: 668–675 doi:10.1038/ng.613.

48. TakataM, SasakiMS, SonodaE, MorrisonC, HashimotoM, et al. (1998) Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17: 5497–5508 doi:10.1093/emboj/17.18.5497.

49. BeucherA, BirrauxJ, TchouandongL, BartonO, ShibataA, et al. (2009) ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28: 3413–3427 doi:10.1038/emboj.2009.276.

50. Sáenz RoblesMT, SymondsH, ChenJ, Van DykeT (1994) Induction versus progression of brain tumor development: differential functions for the pRB- and p53-targeting domains of simian virus 40 T antigen. Mol Cell Biol 14: 2686–2698.

51. SeluanovA, MittelmanD, Pereira-SmithOM, WilsonJH, GorbunovaV (2004) DNA end joining becomes less efficient and more error-prone during cellular senescence. Proc Natl Acad Sci USA 101: 7624–7629 doi:10.1073/pnas.0400726101.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#