Dietary Restriction Induced Longevity Is Mediated by Nuclear Receptor NHR-62 in
Dietary restriction (DR) extends lifespan in a wide variety of species, yet the underlying mechanisms are not well understood. Here we show that the Caenorhabditis elegans HNF4α-related nuclear hormone receptor NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. nhr-62 mediates the longevity of eat-2 mutants, a genetic mimetic of dietary restriction, and blunts the longevity response of DR induced by bacterial food dilution at low nutrient levels. Metabolic changes associated with DR, including decreased Oil Red O staining, decreased triglyceride levels, and increased autophagy are partly reversed by mutation of nhr-62. Additionally, the DR fatty acid profile is altered in nhr-62 mutants. Expression profiles reveal that several hundred genes induced by DR depend on the activity of NHR-62, including a putative lipase required for the DR response. This study provides critical evidence of nuclear hormone receptor regulation of the DR longevity response, suggesting hormonal and metabolic control of life span.
Vyšlo v časopise:
Dietary Restriction Induced Longevity Is Mediated by Nuclear Receptor NHR-62 in. PLoS Genet 9(7): e32767. doi:10.1371/journal.pgen.1003651
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003651
Souhrn
Dietary restriction (DR) extends lifespan in a wide variety of species, yet the underlying mechanisms are not well understood. Here we show that the Caenorhabditis elegans HNF4α-related nuclear hormone receptor NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. nhr-62 mediates the longevity of eat-2 mutants, a genetic mimetic of dietary restriction, and blunts the longevity response of DR induced by bacterial food dilution at low nutrient levels. Metabolic changes associated with DR, including decreased Oil Red O staining, decreased triglyceride levels, and increased autophagy are partly reversed by mutation of nhr-62. Additionally, the DR fatty acid profile is altered in nhr-62 mutants. Expression profiles reveal that several hundred genes induced by DR depend on the activity of NHR-62, including a putative lipase required for the DR response. This study provides critical evidence of nuclear hormone receptor regulation of the DR longevity response, suggesting hormonal and metabolic control of life span.
Zdroje
1. KenyonCJ (2010) The genetics of ageing. Nature 464: 504–512 doi:10.1038/nature08980.
2. RothLW, PolotskyAJ (2012) Can we live longer by eating less? A review of caloric restriction and longevity. Maturitas 71: 315–319 doi:10.1016/j.maturitas.2011.12.017.
3. ColmanRJ, AndersonRM, JohnsonSC, KastmanEK, KosmatkaKJ, et al. (2009) Caloric restriction delays disease onset and mortality in Rhesus monkeys. Science 325: 201–204 doi:10.1126/science.1173635.
4. MattisonJA, RothGS, BeasleyTM, TilmontEM, HandyAM, et al. (2012) Impact of caloric restriction on health and survival in Rhesus monkeys from the NIA study. Nature 489: 318–321 doi:10.1038/nature11432.
5. RedmanLM, RavussinE (2011) Caloric restriction in humans: Impact on Physiological, Psychological and Behavioral Outcomes. Antioxidants & Redox Signaling 14: 275–287.
6. WalfordRL, MockD, VerderyR, MaccallumT (2002) Calorie Restriction in Biosphere 2/: Alterations in Physiologic, Hematologic, Hormonal, and Biochemical Parameters in Humans Restricted for a 2-Year Period. Journal of Gerontology: Biological Sciences 57A: B211–B224.
7. OmodeiD, FontanaL (2011) Calorie restriction and prevention of age-associated chronic disease. FEBS Letters 585: 1537–1542 doi:10.1016/j.febslet.2011.03.015.
8. StanfelMN, ShamiehLS, KaeberleinM, KennedyBK (2009) The TOR pathway comes of age. Biochimica et Biophysica Acta 1790: 1067–1074 doi:10.1016/j.bbagen.2009.06.007.
9. KlassM (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mechanisms of Ageing and Development 6: 413–429.
10. PanowskiSH, WolffS, AguilaniuH, DurieuxJ, DillinA (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447: 550–555.
11. LakowskiB, HekimiS (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 95: 13091–13096.
12. GreerEL, DowlatshahiD, BankoMR, VillenJ, HoangK, et al. (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Current Biology 17: 1646–1656 doi:10.1016/j.cub.2007.08.047.
13. KaeberleinTL, SmithED, TsuchiyaM, WeltonKL, ThomasJH, et al. (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5: 487–494 doi:10.1111/j.1474-9726.2006.00238.x.
14. HonjohS, YamamotoT, UnoM, NishidaE (2009) Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature 457: 726–730 doi:10.1038/nature07583.
15. WangY, TissenbaumHA (2006) Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mechanisms of Ageing and Development 127: 48–56 doi:10.1016/j.mad.2005.09.005.
16. MairW, PanowskiSH, ShawRJ, DillinA (2009) Optimizing dietary restriction for genetic epistasis analysis and gene discovery in C. elegans. PloS One 4: e4535 doi:10.1371/journal.pone.0004535.
17. BishopNA, GuarenteL (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447: 545–549 doi:10.1038/nature05904.
18. SteinkrausKA, SmithED, DavisC, CarrD, PendergrassWR, et al. (2008) Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 7: 394–404 doi:10.1111/j.1474-9726.2008.00385.x.
19. ChenD, ThomasEL, KapahiP (2009) HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genetics 5: e1000486 doi:10.1371/journal.pgen.1000486.
20. HansenM, ChandraA, MiticLL, OnkenB, DriscollM, et al. (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genetics 4: e24 doi:10.1371/journal.pgen.0040024.
21. HansenM, TaubertS, CrawfordD, LibinaN, LeeS-J, et al. (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6: 95–110 doi:10.1111/j.1474-9726.2006.00267.x.
22. WollamJ, AntebiA (2011) Sterol regulation of metabolism, homeostasis, and development. Annual Review of Biochemistry 80: 885–916 doi:10.1146/annurev-biochem-081308-165917.
23. MagnerDB, AntebiA (2008) Caenorhabditis elegans nuclear receptors: insights into life traits. Trends in Endocrinology and Metabolism 19: 153–160 doi:10.1016/j.tem.2008.02.005.
24. JumpDB, BotolinD, WangY, XuJ, ChristianB, et al. (2005) Recent advances in nutritional sciences fatty acid regulation of hepatic gene transcription. The Journal of Nutrition 135: 2503–2506.
25. SampathH, NtambiJM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annual Review of Nutrition 25: 317–340 doi:10.1146/annurev.nutr.25.051804.101917.
26. PalankerL, TennessenJM, LamG, ThummelCS (2009) Drosophila HNF4 regulates lipid mobilization and beta-oxidation. Cell Metabolism 9: 228–239 doi:10.1016/j.cmet.2009.01.009.
27. Robinson-RechaviM, Maina CV, GissendannerCR, LaudetV, SluderA (2005) Explosive lineage-specific expansion of the orphan nuclear receptor HNF4 in nematodes. Journal of Molecular Evolution 60: 577–586 doi:10.1007/s00239-004-0175-8.
28. KenyonC, ChangJ, GenschE, RudnerA, TabtlangR (1993) A C. elegans Mutant That Lives Twice as Long as Wild Type. Nature 366: 461–464.
29. DillinA, HsuA-L, Arantes-OliveiraN, Lehrer-GraiwerJ, HsinH, et al. (2002) Rates of Behavior and Aging Specified by Mitochondrial Function During Development. Science 298: 2398–2401 doi:10.1126/science.1077780.
30. SarovM, MurrayJI, SchanzeK, PozniakovskiA, NiuW, et al. (2012) A Genome-Scale Resource for In Vivo Tag-Based Protein Function Exploration in C. elegans. Cell 150: 855–866 doi:10.1016/j.cell.2012.08.001.
31. BermanJR, KenyonC (2006) Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124: 1055–1068 doi:10.1016/j.cell.2006.01.039.
32. GerischB, RottiersV, LiD, MotolaDL, CumminsCL, et al. (2007) A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling. Proceedings of the National Academy of Sciences of the United States of America 104: 5014–5019 doi:10.1073/pnas.0700847104.
33. Van GilstMR, HadjivassiliouH, JollyA, YamamotoKR (2005) Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biology 3: e53 doi:10.1371/journal.pbio.0030053.
34. BrockTJ, BrowseJ, WattsJL (2006) Genetic Regulation of Unsaturated Fatty Acid Composition in C. elegans. PLoS Genetics 2: e108 doi:10.1371/journal.pgen.0020108.
35. O'RourkeEJ, SoukasAA, CarrCE, RuvkunG (2009) C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metabolism 10: 430–435 doi:10.1016/j.cmet.2009.10.002.
36. GoudeauJ, BelleminS, Toselli-MollereauE, ShamalnasabM, ChenY, et al. (2011) Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biology 9: e1000599 doi:10.1371/journal.pbio.1000599.
37. WangM, O'RourkeE, RuvkunG (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science (New York, NY) 322: 957–960.
38. TangF, WatkinsJW, BermudezM, GrayR, GabanA, et al. (2008) A life-span extending form of autophagy employs the vacuole-vacuole fusion machinery. Autophagy 4: 874–886.
39. DerewendaZ, DerewendaU, DodsonG (1992) The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. Journal of Molecular Biology 227: 818–839.
40. WongH, SchotzMC (2002) The lipase gene family. The Journal of Lipid Research 43: 993–999 doi:10.1194/jlr.R200007-JLR200.
41. BisognoT, HowellF, WilliamsG, MinassiA, CascioMG, et al. (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. The Journal of Cell Biology 163: 463–468 doi:10.1083/jcb.200305129.
42. SinghR, KaushikS, WangY, XiangY, NovakI, et al. (2009) Autophagy regulates lipid metabolism. Nature 458: 1131–1135 doi:10.1038/nature07976.
43. LapierreLR, GelinoS, MeléndezA, HansenM (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Current Biology 21: 1507–1514 doi:10.1016/j.cub.2011.07.042.
44. KirisakoT, BabaM, IshiharaN, MiyazawaK, OhsumiM, et al. (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. The Journal of Cell Biology 147: 435–446.
45. HuangDW, ShermanBT, LempickiRA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4: 44–57 doi:10.1038/nprot.2008.211.
46. HuangDW, ShermanBT, LempickiRA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research 37: 1–13 doi:10.1093/nar/gkn923.
47. KatewaSD, DemontisF, KolipinskiM, HubbardA, GillMS, et al. (2012) Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metabolism 16: 97–103 doi:10.1016/j.cmet.2012.06.005.
48. BrussMD, KhambattaCF, RubyMA, AggarwalI, HellersteinMK (2010) Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. American Journal of Physiology Endocrinology and Metabolism 298: E108–16 doi:10.1152/ajpendo.00524.2009.
49. O'RourkeEJ, KuballaP, XavierR, RuvkunG (2013) ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy. Genes & Development 27: 429–440 doi:10.1101/gad.205294.112.).
50. MurphyCT, McCarrollSA, BargmannCI, FraserA, KamathRS, et al. (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277–283 doi:10.1038/nature01789.
51. KatewaSD, KapahiP (2010) Dietary restriction and aging, 2009. Aging Cell 9: 105–112 doi:10.1111/j.1474-9726.2010.00552.x.
52. MeléndezA, HallDH, HansenM (2008) Monitoring the role of autophagy in C. elegans aging. Methods in Enzymology 451: 493–520 doi:10.1016/S0076-6879(08)03229-1.
53. KapahiP, ChenD, RogersAN, KatewaSD, LiPW-L, et al. (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metabolism 11: 453–465 doi:10.1016/j.cmet.2010.05.001.
54. CurranSP, RuvkunG (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genetics 3: e56 doi:10.1371/journal.pgen.0030056.
55. CortonJC, ApteU, AndersonSP, LimayeP, YoonL, et al. (2004) Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. The Journal of Biological Chemistry 279: 46204–46212 doi:10.1074/jbc.M406739200.
56. RezziS, MartinF-PJ, ShanmuganayagamD, ColmanRJ, NicholsonJK, et al. (2009) Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Experimental Gerontology 44: 356–362 doi:10.1016/j.exger.2009.02.008.
57. PlankM, WuttkeD, Van DamS, ClarkeSA, De MagalhãesJP (2012) A meta-analysis of caloric restriction gene expression profiles to infer common signatures and regulatory mechanisms. Molecular BioSystems 8: 1339–1349.
58. HertzR, MagenheimJ, BermanI, Bar-TanaJ (1998) Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4 alpha. Nature 392: 512–516.
59. WahliW, MichalikL (2012) PPARs at the crossroads of lipid signaling and inflammation. Trends in Endocrinology and Metabolism 23: 351–363 doi:10.1016/j.tem.2012.05.001.
60. BrennerS (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
61. AbràmoffMD, MagalhãesPJ, RamSJ (2004) Image processing with ImageJ. Biophotonics International 11: 36–42.
62. GerischB, WeitzelC, Kober-EisermannC, RottiersV, AntebiA (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Developmental Cell 1: 841–851.
63. SupekF, BošnjakM, ŠkuncaN, ŠmucT (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PloS One 6: e21800 doi:10.1371/journal.pone.0021800.
64. ShannonP, MarkielA, OzierO, BaligaNS, WangJT, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504 doi:10.1101/gr.1239303.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 7
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Cohesion Protein SOLO Associates with SMC1 and Is Required for Synapsis, Recombination, Homolog Bias and Cohesion and Pairing of Centromeres in Drosophila Meiosis
- Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry
- Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and Mammals
- SLC26A4 Targeted to the Endolymphatic Sac Rescues Hearing and Balance in Mutant Mice