#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies


Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV) among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads) of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26) and nearly all of these (n = 21) are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly genomes.


Vyšlo v časopise: Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies. PLoS Genet 9(7): e32767. doi:10.1371/journal.pgen.1003620
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003620

Souhrn

Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV) among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads) of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26) and nearly all of these (n = 21) are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly genomes.


Zdroje

1. EhrlichPR, RavenPH (1964) Butterflies and plants: A study in coevolution. Evolution 18: 586–608.

2. DethierVG (1937) Gustation and olfaction in lepidopterous larvæ. Biol Bull 72: 7–23.

3. SchneiderD (1964) Insect antennae. Annu Rev Entomol 9: 103–122.

4. SchoonhovenLM, DethierVM (1966) Sensory aspects of host-plant discrimination by lepidopterous larvae. Arch Neerl ZooI 16: 497–530.

5. AndersonAL (1932) The sensitivity of the legs of common butterflies to sugars. J Exp Zool B Mol Dev Evol 63: 235–259.

6. CalatayudP-A, ChimtawiM, TaubanD, Marion-PollR, RüBL, et al. (2006) Sexual dimorphism of antennal, tarsal and ovipositor chemosensilla in the African stemborer, Busseola fusca (Fuller) (Lepidoptera:Noctuidae). An Soc Entomol Fr 42: 403–412.

7. JorgensenK, AlmaasTJ, Marion-PollF, MustapartaH (2007) Electrophysiological characterization of responses from gustatory receptor neurons of sensilla chaetica in the moth Heliothis virescens. Chem Senses 32: 863–879.

8. Marion-PollFC, GuillauminD, MassonC (1992) Sexual dimorphism of tarsal receptors and sensory equipment of the ovipositor in the European corn borer, Ostrinia nubilalis. Cell Tissue Res 267: 507–518.

9. KrennHW, PenzCM (1998) Mouthparts of Heliconius butterflies (Lepidoptera: Nymphalidae): A search for anatomical adaptations to pollen feeding behavior. Int J Insect Morphol Embryol 27: 301–309.

10. RenouM (1983) Les récepteurs gustatifs du tarse antérieur de la femelle d'Heliconius charitonius (Lep.: Heliconiidae). Annls Soc Ent Fr (NS) 19: 101–106.

11. ChapmanRF (2003) Contact chemoreception in feeding by phytophagous insects. Annu Rev Entomol 48: 455–484.

12. MyersJ (1969) Distribution of foodplant chemoreceptors on the female Florida Queen butterfly, Danaus gilippus berenice (Nymphalidae). J Lepid Soc 23: 196–198.

13. Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487: 94–98.

14. ZhanS, MerlinC, BooreJL, ReppertSM (2011) The monarch butterfly genome yields insights into long-distance migration. Cell 147: 1171–1185.

15. International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38: 1036–1045.

16. BriscoeAD, BybeeSM, BernardGD, YuanF, Sison-MangusMP, et al. (2010) Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proc Natl Acad Sci USA 107: 3628–3633.

17. BoggsCL, SmileyJT, GilbertLE (1981) Patterns of pollen exploitation by Heliconius butterflies. Oecologia 48: 284–289.

18. GilbertLE (1972) Pollen feeding and reproductive biology of Heliconius butterflies. Proc Natl Acad Sci USA 69: 1403–1407.

19. Engler-ChaouatHS, GilbertLE (2007) De novo synthesis vs. sequestration: Negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J Chem Ecol 33: 25–42.

20. BensonWW, BrownKS, GilbertLE (1975) Coevolution of plants and herbivores: Passion flower butterflies. Evolution 29: 659–680.

21. ClynePJ, WarrCG, CarlsonJR (2000) Candidate taste receptors in Drosophila. Science 287: 1830–1834.

22. DunipaceL, MeisterS, McNealyC, AmreinH (2001) Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr Biol 11: 822–835.

23. ScottK, BradyRJr, CravchikA, MorozovP, RzhetskyA, et al. (2001) A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104: 661–673.

24. RobertsonHM, WarrCG, CarlsonJR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA 100: 14537–14542.

25. LeeY, KangMJ, ShimJ, CheongCU, MoonSJ, et al. (2012) Gustatory receptors required for avoiding the insecticide L-canavanine. J Neurosci 32: 1429–1435.

26. JonesWD, CayirliogluP, KadowIG, VosshallLB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445: 86–90.

27. MontellC (2009) A taste of the Drosophila gustatory receptors. Curr Opin Neurobiol 19: 345–353.

28. ZhangHJ, AndersonAR, TrowellSC, LuoAR, XiangZH, et al. (2011) Topological and functional characterization of an insect gustatory receptor. PLoS ONE 6: e24111.

29. IshimotoH, TakahashiK, UedaR, TanimuraT (2005) G-protein gamma subunit 1 is required for sugar reception in Drosophila. EMBO J 24: 3259–3265.

30. KainP, BadshaF, HussainSM, NairA, HasanG, et al. (2010) Mutants in phospholipid signaling attenuate the behavioral response of adult Drosophila to trehalose. Chem Senses 35: 663–673.

31. YaoCA, CarlsonJR (2010) Role of G-proteins in odor-sensing and CO2-sensing neurons in Drosophila. J Neurosci 30: 4562–4572.

32. SatoK, TanakaK, TouharaK (2011) Sugar-regulated cation channel formed by an insect gustatory receptor. Proc Natl Acad Sci USA 108: 11680–11685.

33. DahanukarA, FosterK, van der Goes van NatersWM, CarlsonJR (2001) A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci 4: 1182–1186.

34. ChybS, DahanukarA, WickensA, CarlsonJR (2003) Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc Natl Acad Sci USA 100 Suppl 2: 14526–14530.

35. SloneJ, DanielsJ, AmreinH (2007) Sugar receptors in Drosophila. Curr Biol 17: 1809–1816.

36. KwonJY, DahanukarA, WeissLA, CarlsonJR (2007) The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci USA 104: 3574–3578.

37. MoonSJ, KottgenM, JiaoY, XuH, MontellC (2006) A taste receptor required for the caffeine response in vivo. Curr Biol 16: 1812–1817.

38. LeeY, MoonSJ, MontellC (2009) Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci USA 106: 4495–4500.

39. WeissLA, DahanukarA, KwonJY, BanerjeeD, CarlsonJR (2011) The molecular and cellular basis of bitter taste in Drosophila. Neuron 69: 258–272.

40. SmadjaC, ShiP, ButlinRK, RobertsonHM (2009) Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Mol Biol Evol 26: 2073–2086.

41. RobertsonHM, WannerKW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16: 1395–1403.

42. Abdel-LatiefM (2007) A family of chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera). PLoS ONE 2: e1319.

43. KentLB, WaldenKK, RobertsonHM (2008) The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti. Chem Senses 33: 79–93.

44. HillCA, FoxAN, PittsRJ, KentLB, TanPL, et al. (2002) G protein-coupled receptors in Anopheles gambiae. Science 298: 176–178.

45. ClarkAG, EisenMB, SmithDR, BergmanCM, OliverB, et al. (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450: 203–218.

46. McBrideCS, ArguelloJR (2007) Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177: 1395–1416.

47. WannerKW, RobertsonHM (2008) The gustatory receptor family in the silkworm moth Bombyx mori is characterized by a large expansion of a single lineage of putative bitter receptors. Insect Mol Biol 17: 621–629.

48. Jacquin-JolyE, LegeaiF, MontagneN, MonsempesC, FrancoisMC, et al. (2012) Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis. Int J Biol Sci 8: 1036–1050.

49. KriegerJ, RamingK, DewerYM, BetteS, ConzelmannS, et al. (2002) A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur J Neurosci 16: 619–628.

50. Grosse-WildeE, KueblerLS, BucksS, VogelH, WicherD, et al. (2011) Antennal transcriptome of Manduca sexta. Proc Natl Acad Sci USA 108: 7449–7454.

51. HowlettN, DauberKL, ShuklaA, MortonB, GlendinningJI, et al. (2012) Identification of chemosensory receptor genes in Manduca sexta and knockdown by RNA interference. BMC Genomics 13: 211.

52. OzakiK, RyudaM, YamadaA, UtoguchiA, IshimotoH, et al. (2011) A gustatory receptor involved in host plant recognition for oviposition of a swallowtail butterfly. Nat Commun 2: 542.

53. BrownKS (1981) The biology of Heliconius and related genera. Annu Rev Entomol 26: 427–456.

54. Spencer KC (1988) Chemical mediation of coevolution in the Passiflora-Heliconius interaction. In: Spencer KC, editor. Chemical mediation of coevolution. London: Academic Press. pp. 167–240.

55. GardinerA, BarkerD, ButlinRK, JordanWC, RitchieMG (2008) Drosophila chemoreceptor gene evolution: selection, specialization and genome size. Mol Ecol 17: 1648–1657.

56. AbyzovA, UrbanAE, SnyderM, GersteinM (2011) CNVator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21: 974–984.

57. OmuraH, HondaK, AsaokaK, InoueTA (2011) Divergent behavioral and electrophysiological taste responses in the mid-legs of adult butterflies, Vanessa indica and Argyreus hyperbius. J Insect Physiol 57: 118–126.

58. FoxRM (1966) Forelegs of butterflies. I. Introduction: chemoreception. J Res Lepid 5: 1–12.

59. ThomC, GuerensteinPG, MechaberWL, HildebrandJG (2004) Floral CO2 reveals flower profitability to moths. J Chem Ecol 30: 1285–1288.

60. LiuY, GuS, ZhangY, GuoY, WangG (2012) Candidate olfaction genes identified within the Helicoverpa armiga antennae transcriptome. PLoS One 7: e48260.

61. LavagninoN, SerraF, ArbizaL, DopazoH, HassonE (2012) Evolutionary genomics of genes involved in olfactory behavior in the Drosophila melanogaster species subgroup. Evol Bioinform Online 8: 89–104.

62. Schuster-BöcklerB, ConradD, BatemanA (2010) Dosage sensitivity shapes the evolution of copy-number varied regions. PLoS One 5: e9474.

63. BentonR, SachseS, MichnickSW, VosshallLB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4: e20.

64. CooperGM, NickersonDA, EichlerEE (2007) Mutational and selective effects on copy-number variants in the human genome. Nat Genet 39: S22–S29.

65. PuineanAM, FosterSP, OpiphantL, DenholmI, FieldLM, et al. (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet 6: e1000999.

66. BariamiV, JonesCM, PoupardinR, VontasJ, RansonH (2012) Gene amplification, ABC transporters and cytochrome P450s: Unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti. PLoS Negl Trop Dis 6: e1692.

67. SchmidtJM, GoodRT, AppletonB, SherrardJ, RaymantGC, et al. (2010) Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet 6: e1000998.

68. SchriderDR, StevensK, CardeñoCM, LangleyCH, HahnMW (2011) Genome-wide analysis of regrogene polymorphism in Drosophila melanogaster. Genome Res 21: 2087–2095.

69. BaurR, HaribalM, RenwickJAA, StädlerE (1998) Contact chemoreception related to host selection and oviposition behavior in the monarch butterfly, Danaus plexippus. Physiol Entomol 23: 7–19.

70. ZaluckiMP, BrowerLP, MalcolmSB (1990) Oviposition by Danaus plexippus in relation to cardenolide content of three Asclepias species in the southeastern U.S.A. Ecol Entomol 15: 231–240.

71. PittsRJ, RinkerDC, JonesPL, RokasA, ZwiebelLJ (2011) Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics 12: 271.

72. BarpEA, SoaresGLG, GianiEJM, RodriguesD, MoreiraGRP (2011) Variation in nectar and pollen availability, sucrose preference and daily response in the use of flowers by Heliconius erato phyllis. J Insect Behav 24: 200–219.

73. EstradaC, JigginsCD (2008) Interspecific sexual attraction because of convergence in warning colouration: is there a conflict between natural and sexual selection in mimetic species? J Evol Biol 21: 749–760.

74. KrennHW, EberhardMJB, EberhardSH, HiklA-L, HuberW, et al. (2009) Mechanical damage to pollen aids nutrient acquisition in Heliconius butterflies (Nymphalidae). Arthropod-Plant Interact 3: 203–208.

75. Dunlap-PiankaH, BoggsCL, GilbertLE (1977) Ovarian dynamics in Heliconiine butterflies: programmed senescence versus eternal youth. Science 197: 487–490.

76. BoggsCL, GilbertLE (1979) Male contribution to egg production in butterflies: evidence for transfer of nutrients at mating. Science 206: 83–84.

77. CardosoMZ, GilbertLE (2007) A male gift to its partner? Cyanogenic glycosides in the spermatophore of long wing butterflies (Heliconius). Naturwissenschaften 94: 39–42.

78. ZhenY, AardemaML, MedinaEM, SchumerM, AndolfattoP (2012) Parallel molecular evolution in an herbivore community. Science 337: 1634–1637.

79. CohenMB, SchulerMA, BerenbaumMR (1992) A host-inducible cytochrome P450 from a host-specific caterpillar—molecular cloning and evolution. Proc Natl Acad Sci USA 89: 10920–10924.

80. FrentiuFD, BernardGD, Sison-MangusMP, BrowerAV, BriscoeAD (2007) Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. Mol Biol Evol 24: 2016–2028.

81. TamuraK, PetersonD, PetersonN, StecherG, NeiM, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.

82. SlaterGSC, BirneyE (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6: 31.

83. SieversF, WilmA, DineenD, GibsonTJ, KarpusK, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7 Article Number 539.

84. LewisSE, SearleSM, HarrisN, GibsonM, LyerV, et al. (2002) Apollo: a sequence annotation editor. Genome Biol 3: RESEARCH0082.

85. TrapnellC, WilliamsBA, PerteaG, MortazaviA, KwanG, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511–515.

86. SimpsonJT, WongK, JackmanSD, ScheinJE, JonesSJ, et al. (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19: 1117–1123.

87. SalzbergSL, PhillippyAM, ZiminA, PuiuD, MagocT, et al. (2012) GAGE: A critical evaluation of genome assemblies and assembly algorithms. Genome Res 22: 557–567.

88. VernotB, StolzerM, GoldmanA, DurandD (2008) Reconciliation with non-binary species trees. J Comput Biol 15: 981–1006.

89. DurandD, HalldorssonBV, VernotB (2006) A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol 13: 320–335.

90. BeltranM, JigginsCD, BrowerAVZ, BerminghamE, MalletJ (2007) Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biol J Linn Soc Lond 92: 221–239.

91. WannerKW, AndersonAR, TrowellSC, TheilmannDA, RobertsonHM, et al. (2007) Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol Biol 16: 107–119.

92. TanakaK, UdaY, OnoY, TatsuroN, SuwaM, et al. (2009) Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr Biol 19: 881–890.

93. JordanMD, AndersonA, BegumD, CarraherC, AuthierA, et al. (2009) Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem Senses 34: 383–394.

94. Sánchez-GraciaA, VieiraFG, RozasJ (2009) Molecular evolution of the major chemosensory gene families in insects. Heredity 103: 208–216.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#