-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Genome-scale Co-evolutionary Inference Identifies Functions and Clients of Bacterial Hsp90
The molecular chaperone Hsp90 is essential in eukaryotes, in which it facilitates the folding of developmental regulators and signal transduction proteins known as Hsp90 clients. In contrast, Hsp90 is not essential in bacteria, and a broad characterization of its molecular and organismal function is lacking. To enable such characterization, we used a genome-scale phylogenetic analysis to identify genes that co-evolve with bacterial Hsp90. We find that genes whose gain and loss were coordinated with Hsp90 throughout bacterial evolution tended to function in flagellar assembly, chemotaxis, and bacterial secretion, suggesting that Hsp90 may aid assembly of protein complexes. To add to the limited set of known bacterial Hsp90 clients, we further developed a statistical method to predict putative clients. We validated our predictions by demonstrating that the flagellar protein FliN and the chemotaxis kinase CheA behaved as Hsp90 clients in Escherichia coli, confirming the predicted role of Hsp90 in chemotaxis and flagellar assembly. Furthermore, normal Hsp90 function is important for wild-type motility and/or chemotaxis in E. coli. This novel function of bacterial Hsp90 agreed with our subsequent finding that Hsp90 is associated with a preference for multiple habitats and may therefore face a complex selection regime. Taken together, our results reveal previously unknown functions of bacterial Hsp90 and open avenues for future experimental exploration by implicating Hsp90 in the assembly of membrane protein complexes and adaptation to novel environments.
Vyšlo v časopise: Genome-scale Co-evolutionary Inference Identifies Functions and Clients of Bacterial Hsp90. PLoS Genet 9(7): e32767. doi:10.1371/journal.pgen.1003631
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003631Souhrn
The molecular chaperone Hsp90 is essential in eukaryotes, in which it facilitates the folding of developmental regulators and signal transduction proteins known as Hsp90 clients. In contrast, Hsp90 is not essential in bacteria, and a broad characterization of its molecular and organismal function is lacking. To enable such characterization, we used a genome-scale phylogenetic analysis to identify genes that co-evolve with bacterial Hsp90. We find that genes whose gain and loss were coordinated with Hsp90 throughout bacterial evolution tended to function in flagellar assembly, chemotaxis, and bacterial secretion, suggesting that Hsp90 may aid assembly of protein complexes. To add to the limited set of known bacterial Hsp90 clients, we further developed a statistical method to predict putative clients. We validated our predictions by demonstrating that the flagellar protein FliN and the chemotaxis kinase CheA behaved as Hsp90 clients in Escherichia coli, confirming the predicted role of Hsp90 in chemotaxis and flagellar assembly. Furthermore, normal Hsp90 function is important for wild-type motility and/or chemotaxis in E. coli. This novel function of bacterial Hsp90 agreed with our subsequent finding that Hsp90 is associated with a preference for multiple habitats and may therefore face a complex selection regime. Taken together, our results reveal previously unknown functions of bacterial Hsp90 and open avenues for future experimental exploration by implicating Hsp90 in the assembly of membrane protein complexes and adaptation to novel environments.
Zdroje
1. RutherfordSL, ZukerCS (1994) Protein Folding and the Regulation of Signaling Pathways. Cell 79 : 1129–1132.
2. PicardD (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cellular and Molecular Life Sciences 59 : 1640–1648 doi:10.1007/PL00012491
3. YoungJC (2001) Hsp90: a specialized but essential protein-folding tool. The Journal of Cell Biology 154 : 267–274 doi:10.1083/jcb.200104079
4. ZhaoR, DaveyM, HsuY-C, KaplanekP, TongA, et al. (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120 : 715–727 doi:10.1016/j.cell.2004.12.024
5. TaipaleM, JaroszDF, LindquistS (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature reviews Molecular cell biology 11 : 515–528 doi:10.1038/nrm2918
6. RutherfordSL, LindquistS (1998) Hsp90 as a capacitor for morphological evolution. Nature 396 : 336–342 doi:10.1038/24550
7. QueitschC, Sangster Ta, LindquistS (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417 : 618–624 doi:10.1038/nature749
8. CowenLE, LindquistS (2005) Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309 : 2185–2189 doi:10.1126/science.1118370
9. YeyatiPL, BancewiczRM, MauleJ, Van HeyningenV (2007) Hsp90 selectively modulates phenotype in vertebrate development. PLoS Genetics 3: e43 doi:10.1371/journal.pgen.0030043
10. BardwellJC, Craig Ea (1988) Ancient heat shock gene is dispensable. Journal of bacteriology 170 : 2977–2983.
11. ChenB, ZhongD, MonteiroA (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7 : 156 doi:10.1186/1471-2164-7-156
12. StechmannA, Cavalier-SmithT (2004) Evolutionary origins of Hsp90 chaperones and a deep paralogy in their bacterial ancestors. J Eukaryot Microbiol 51 : 364–373.
13. BardwellJC, Craig Ea (1987) Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 84 : 5177–5181.
14. GenestO, HoskinsJR, CambergJL, DoyleSM, WicknerS (2011) Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proceedings of the National Academy of Sciences 108 : 8206–8211 doi:10.1073/pnas.1104703108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1104703108
15. GenestO, ReidyM, StreetTO, HoskinsJR, CambergJL, et al. (2013) Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast. Molecular cell 49 : 464–473 doi:10.1016/j.molcel.2012.11.017
16. YosefI, GorenMG, KiroR, EdgarR, QimronU (2011) High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. Proceedings of the National Academy of Sciences of the United States of America 108 : 20136–20141 doi:10.1073/pnas.1113519108
17. SatoT, MinagawaS, KojimaE, OkamotoN, NakamotoH (2010) HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942. Molecular microbiology 76 : 576–589 doi:10.1111/j.1365-2958.2010.07139.x
18. Motojima-MiyazakiY, YoshidaM, MotojimaF (2010) Ribosomal protein L2 associates with E. coli HtpG and activates its ATPase activity. Biochemical and biophysical research communications 400 : 241–245 doi:10.1016/j.bbrc.2010.08.047
19. LiH, SourjikV (2011) Assembly and stability of flagellar motor in Escherichia coli. Molecular Microbiology 80 : 886–899 doi:10.1111/j.1365-2958.2011.07557.x
20. Peregrín-AlvarezJM, XiongX, SuC, ParkinsonJ (2009) The Modular Organization of Protein Interactions in Escherichia coli. PLoS computational biology 5: e1000523 doi:10.1371/journal.pcbi.1000523
21. MakhnevychT, HouryWA (2012) The role of Hsp90 in protein complex assembly. Biochimica et biophysica acta 1823 : 674–682 doi:10.1016/j.bbamcr.2011.09.001
22. HwangS, RheeSY, MarcotteEM, LeeI (2011) Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network. Nature protocols 6 : 1429–1442 doi:10.1038/nprot.2011.372
23. WangPI, HwangS, KincaidRP, SullivanCS, LeeI, et al. (2012) RIDDLE: Reflective diffusion and local extension reveal functional associations for unannotated gene sets via proximity in a gene network. Genome Biology 13: R125 doi:10.1186/gb-2012-13-12-r125
24. OgataH, GotoS, SatoK, FujibuchiW, BonoH, et al. (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic acids research 27 : 29–34.
25. FelsensteinJ (1985) Phylogenies and the Comparative Method. American Naturalist 125 : 1–15.
26. PagelM (1994) Detecting Correlated Evolution on Phylogenies: A General Method for the Comparative Analysis of Discrete Characters. Proceedings of the Royal Society B: Biological Sciences 255 : 37–45 doi:10.1098/rspb.1994.0006
27. BarkerD, MeadeA, PagelM (2007) Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics (Oxford, England) 23 : 14–20 doi:10.1093/bioinformatics/btl558
28. BarkerD, PagelM (2005) Predicting functional gene links from phylogenetic-statistical analyses of whole genomes. PLoS Computational Biology 1: e3 doi:10.1371/journal.pcbi.0010003
29. CiccarelliFD, DoerksT, Von MeringC, CreeveyCJ, SnelB, et al. (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311 : 1283–1287 doi:10.1126/science.1123061
30. MunozR, YarzaP, LudwigW, EuzébyJ, AmannR, et al. (2011) Release LTPs104 of the All-Species Living Tree. Systematic and applied microbiology 34 : 169–170 doi:10.1016/j.syapm.2011.03.001
31. AkaikeHAI (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control 19 : 716–723.
32. KumarM, SourjikV (2012) Physical map and dynamics of the chaperone network in Escherichia coli. Molecular microbiology 84 : 736–747 doi:10.1111/j.1365-2958.2012.08054.x
33. InoueT, ShingakiR, HiroseS, WakiK, MoriH, et al. (2007) Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. Journal of bacteriology 189 : 950–957 doi:10.1128/JB.01294-06
34. PartridgeJD, HarsheyRM (2013) Swarming: flexible roaming plans. Journal of bacteriology 195 : 909–918 doi:10.1128/JB.02063-12
35. GrafC, StankiewiczM, KramerG, MayerMP (2009) Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine. The EMBO journal 28 : 602–613 doi:10.1038/emboj.2008.306
36. PanaretouB, ProdromouC, RoeSM, O'BrienR, LadburyJE, et al. (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. The EMBO journal 17 : 4829–4836 doi:10.1093/emboj/17.16.4829
37. StreetTO, LaveryLA, AgardDA (2011) Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Molecular cell 42 : 96–105 doi:10.1016/j.molcel.2011.01.029
38. YoungJC, HartlFU (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. The EMBO journal 19 : 5930–5940 doi:10.1093/emboj/19.21.5930
39. KalirS, McClureJ, PabbarajuK, SouthwardC, RonenM, et al. (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292 : 2080–2083 doi:10.1126/science.1058758
40. SchröderH, LangerT, HartlFU, BukauB (1993) DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. the The EMBO Journal 12 : 4137–4144.
41. SzaboA, LangerT, SchröderH, FlanaganJ, BukauB, et al. (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proceedings of the National Academy of Sciences of the United States of America 91 : 10345–10349.
42. HerbstR, GastK, SecklerR (1998) Folding of firefly (Photinus pyralis) luciferase: aggregation and reactivation of unfolding intermediates. Biochemistry 37 : 6586–6597 doi:10.1021/bi972928i
43. TaipaleM, KrykbaevaI, KoevaM, KayatekinC, WestoverKD, et al. (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150 : 987–1001 doi:10.1016/j.cell.2012.06.047
44. RöhlA, RohrbergJ, BuchnerJ (2013) The chaperone Hsp90: changing partners for demanding clients. Trends in biochemical sciences 38(5): 253–262 doi:10.1016/j.tibs.2013.02.003
45. BuchnerJ (2010) Bacterial Hsp90–desperately seeking clients. Molecular microbiology 76 : 540–544 doi:10.1111/j.1365-2958.2010.07140.x
46. Chevance FFV, HughesKT (2008) Coordinating assembly of a bacterial macromolecular machine. Nature reviews Microbiology 6 : 455–465 doi:10.1038/nrmicro1887
47. RichterK, BuchnerJ (2011) Closing in on the Hsp90 chaperone-client relationship. Structure 19 : 445–446 doi:10.1016/j.str.2011.03.007
48. SouthworthDR, AgardDA (2008) Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Molecular cell 32 : 631–640 doi:10.1016/j.molcel.2008.10.024
49. BrocchieriL, KarlinS (2005) Protein length in eukaryotic and prokaryotic proteomes. Nucleic acids research 33 : 3390–3400 doi:10.1093/nar/gki615
50. FernándezA, LynchM (2011) Non-adaptive origins of interactome complexity. Nature 474 : 502–505 doi:10.1038/nature09992
51. DartigalongueC, RainaS (1998) A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. The EMBO journal 17 : 3968–3980 doi:10.1093/emboj/17.14.3968
52. DesvauxM, HébraudM, HendersonIR, PallenMJ (2006) Type III secretion: what's in a name? Trends in microbiology 14 : 157–160 doi:10.1016/j.tim.2006.02.009
53. AbbySS, RochaEPC (2012) The Non-Flagellar Type III Secretion System Evolved from the Bacterial Flagellum and Diversified into Host-Cell Adapted Systems. PLoS Genetics 8: e1002983 doi:10.1371/journal.pgen.1002983
54. FraserGM, HughesC (1999) Swarming motility. Current opinion in microbiology 2 : 630–635.
55. WeiY, WangX, LiuJ, NememanI, SinghAH, et al. (2011) The population dynamics of bacteria in physically structured habitats and the adaptive virtue of random motility. Proceedings of the National Academy of Sciences of the United States of America 108 : 4047–4052 doi:10.1073/pnas.1013499108
56. JoussetA (2012) Ecological and evolutive implications of bacterial defences against predators. Environmental microbiology 14 : 1830–1843 doi:10.1111/j.1462-2920.2011.02627.x
57. TanabeM, KanehisaM (2012) Using the KEGG database resource. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis. [et al] Chapter 1: Unit1.12 doi:10.1002/0471250953.bi0112s38
58. SieversF, WilmA, DineenD, GibsonTJ, KarplusK, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular systems biology 7 : 539 doi:10.1038/msb.2011.75
59. FelsensteinJ (1989) PHYLIP - Phylogeny inference package (Version 3.2). Cladistics 5 : 164–166.
60. YarzaP, RichterM, PepliesJ, EuzebyJ, AmannR, et al. (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Systematic and applied microbiology 31 : 241–250 doi:10.1016/j.syapm.2008.07.001
61. LudwigW, StrunkO, WestramR, RichterL, MeierH, et al. (2004) ARB: a software environment for sequence data. Nucleic acids research 32 : 1363–1371 doi:10.1093/nar/gkh293
62. http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi.
63. PagelM, MeadeA (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. The American naturalist 167 : 808–825.
64. Rambaut A, Drummond A (2008) Tracer v1.5, Available from http://beast.bio.ed.ac.uk/Tracer.
65. ShultzS, OpieC, AtkinsonQD (2011) Stepwise evolution of stable sociality in primates. Nature 479 : 219–222 doi:10.1038/nature10601
66. KentnerD, SourjikV (2009) Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway. Molecular Systems Biology 5 : 238.
67. SourjikV, BergHC (2000) Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Molecular Microbiology 37 : 740–751.
Štítky
Genetika Reprodukčná medicína
Článek Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and MammalsČlánek The bHLH Subgroup IIId Factors Negatively Regulate Jasmonate-Mediated Plant Defense and DevelopmentČlánek Selective Pressures to Maintain Attachment Site Specificity of Integrative and Conjugative ElementsČlánek Reassembly of Nucleosomes at the Promoter Initiates Resilencing Following Decitabine ExposureČlánek Hepatocyte Growth Factor Signaling in Intrapancreatic Ductal Cells Drives Pancreatic Morphogenesis
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2013 Číslo 7- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- An Solution for Crossover Formation
- Genome-Wide Association Mapping in Dogs Enables Identification of the Homeobox Gene, , as a Genetic Component of Neural Tube Defects in Humans
- Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and Mammals
- Stepwise Activation of the ATR Signaling Pathway upon Increasing Replication Stress Impacts Fragile Site Integrity
- Genomic Analysis of Natural Selection and Phenotypic Variation in High-Altitude Mongolians
- Modification of tRNA by Elongator Is Essential for Efficient Translation of Stress mRNAs
- Role of CTCF Protein in Regulating Locus Transcription
- Gene Set Signature of Reversal Reaction Type I in Leprosy Patients
- Mapping of PARK2 and PACRG Overlapping Regulatory Region Reveals LD Structure and Functional Variants in Association with Leprosy in Unrelated Indian Population Groups
- Is Required for Formation of the Genital Ridge in Mice
- Monopolin Subunit Csm1 Associates with MIND Complex to Establish Monopolar Attachment of Sister Kinetochores at Meiosis I
- Recombination Dynamics of a Human Y-Chromosomal Palindrome: Rapid GC-Biased Gene Conversion, Multi-kilobase Conversion Tracts, and Rare Inversions
- Mechanisms of Protein Sequence Divergence and Incompatibility
- Histone Methyltransferase DOT1L Drives Recovery of Gene Expression after a Genotoxic Attack
- Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies
- Combinatorial Regulation of Meiotic Holliday Junction Resolution in by HIM-6 (BLM) Helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 Nucleases
- The bHLH Subgroup IIId Factors Negatively Regulate Jasmonate-Mediated Plant Defense and Development
- The Role of Interruptions in polyQ in the Pathology of SCA1
- Dietary Restriction Induced Longevity Is Mediated by Nuclear Receptor NHR-62 in
- Fine Time Course Expression Analysis Identifies Cascades of Activation and Repression and Maps a Putative Regulator of Mammalian Sex Determination
- Genome-scale Co-evolutionary Inference Identifies Functions and Clients of Bacterial Hsp90
- Oxidative Stress and Replication-Independent DNA Breakage Induced by Arsenic in
- A Moonlighting Enzyme Links Cell Size with Central Metabolism
- Budding Yeast Greatwall and Endosulfines Control Activity and Spatial Regulation of PP2A for Timely Mitotic Progression
- The Conserved Intronic Cleavage and Polyadenylation Site of CstF-77 Gene Imparts Control of 3′ End Processing Activity through Feedback Autoregulation and by U1 snRNP
- The BTB-zinc Finger Transcription Factor Abrupt Acts as an Epithelial Oncogene in through Maintaining a Progenitor-like Cell State
- The Cohesion Protein SOLO Associates with SMC1 and Is Required for Synapsis, Recombination, Homolog Bias and Cohesion and Pairing of Centromeres in Drosophila Meiosis
- The RNA-binding Proteins FMR1, Rasputin and Caprin Act Together with the UBA Protein Lingerer to Restrict Tissue Growth in
- Pattern Dynamics in Adaxial-Abaxial Specific Gene Expression Are Modulated by a Plastid Retrograde Signal during Leaf Development
- A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus
- Bacterial Adaptation through Loss of Function
- ENU-induced Mutation in the DNA-binding Domain of KLF3 Reveals Important Roles for KLF3 in Cardiovascular Development and Function in Mice
- Interplay between Structure-Specific Endonucleases for Crossover Control during Meiosis
- FGF Signalling Regulates Chromatin Organisation during Neural Differentiation via Mechanisms that Can Be Uncoupled from Transcription
- The Arabidopsis RNA Binding Protein with K Homology Motifs, SHINY1, Interacts with the C-terminal Domain Phosphatase-like 1 (CPL1) to Repress Stress-Inducible Gene Expression
- Selective Pressures to Maintain Attachment Site Specificity of Integrative and Conjugative Elements
- The Conserved ADAMTS-like Protein Lonely heart Mediates Matrix Formation and Cardiac Tissue Integrity
- The cGMP-Dependent Protein Kinase EGL-4 Regulates Nociceptive Behavioral Sensitivity
- RBM5 Is a Male Germ Cell Splicing Factor and Is Required for Spermatid Differentiation and Male Fertility
- Disease-Related Growth Factor and Embryonic Signaling Pathways Modulate an Enhancer of Expression at the 6q23.2 Coronary Heart Disease Locus
- Yeast Pol4 Promotes Tel1-Regulated Chromosomal Translocations
- A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors
- SLC26A4 Targeted to the Endolymphatic Sac Rescues Hearing and Balance in Mutant Mice
- Odoriferous Defensive Stink Gland Transcriptome to Identify Novel Genes Necessary for Quinone Synthesis in the Red Flour Beetle,
- Prediction of Complex Human Traits Using the Genomic Best Linear Unbiased Predictor
- Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry
- Reassembly of Nucleosomes at the Promoter Initiates Resilencing Following Decitabine Exposure
- Exquisite Light Sensitivity of Cryptochrome
- miR-133a Regulates Adipocyte Browning In Vivo
- Strabismus Promotes Recruitment and Degradation of Farnesylated Prickle in Planar Polarity Specification
- Hepatocyte Growth Factor Signaling in Intrapancreatic Ductal Cells Drives Pancreatic Morphogenesis
- Is a Potential Tumor Suppressor Gene Commonly Inactivated by Epigenetic Mechanisms in Colorectal Cancer
- Joint Molecule Resolution Requires the Redundant Activities of MUS-81 and XPF-1 during Meiosis
- The Mating Competence of Geographically Diverse Strains in Their Natural and Unnatural Sand Fly Vectors
- Defective Repair of Oxidative Base Lesions by the DNA Glycosylase Nth1 Associates with Multiple Telomere Defects
- Effective Blocking of the Enhancer Requires Cooperation between Two Main Mechanisms Suggested for the Insulator Function
- Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- SLC26A4 Targeted to the Endolymphatic Sac Rescues Hearing and Balance in Mutant Mice
- Bacterial Adaptation through Loss of Function
- The Cohesion Protein SOLO Associates with SMC1 and Is Required for Synapsis, Recombination, Homolog Bias and Cohesion and Pairing of Centromeres in Drosophila Meiosis
- Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy