Combined Genetic and Genealogic Studies Uncover a Large BAP1 Cancer Syndrome Kindred Tracing Back Nine Generations to a Common Ancestor from the 1700s
Germline BAP1 mutations cause a cancer syndrome characterized by high incidence of mesothelioma (MM), uveal melanoma and other cancers, and by very high penetrance, as all individuals carrying BAP1 mutations developed at least one, and usually several, malignancies throughout their lives. Through screening MM patients with histories of multiple cancers, we found four supposedly unrelated patients that shared an identical germline BAP1 mutation. We investigated whether this BAP1 mutation occurred in a ‘hot-spot’ for “de novo” mutations or whether these four MM patients shared a common ancestor. Using molecular genomics analyses we found that they are related. By genealogic studies we traced their ancestor to a couple that emigrated from Germany to North America in the early 1700’s; we traced the subsequent migration of their descendants, who are now living in at least three different US States. Our findings demonstrate that BAP1 mutations are transmitted among subsequent generations over the course of centuries. This knowledge and methodology is being used to identify additional branches of the family carrying BAP1 mutations. Our study shows that the application of modern genomic analyses, coupled with “classical” family histories collected by the treating physician, and with genealogical searches, offer a powerful strategy to identify high-risk germline BAP1 mutation carriers that will benefit from genetic counseling and early detection cancer screening.
Vyšlo v časopise:
Combined Genetic and Genealogic Studies Uncover a Large BAP1 Cancer Syndrome Kindred Tracing Back Nine Generations to a Common Ancestor from the 1700s. PLoS Genet 11(12): e32767. doi:10.1371/journal.pgen.1005633
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005633
Souhrn
Germline BAP1 mutations cause a cancer syndrome characterized by high incidence of mesothelioma (MM), uveal melanoma and other cancers, and by very high penetrance, as all individuals carrying BAP1 mutations developed at least one, and usually several, malignancies throughout their lives. Through screening MM patients with histories of multiple cancers, we found four supposedly unrelated patients that shared an identical germline BAP1 mutation. We investigated whether this BAP1 mutation occurred in a ‘hot-spot’ for “de novo” mutations or whether these four MM patients shared a common ancestor. Using molecular genomics analyses we found that they are related. By genealogic studies we traced their ancestor to a couple that emigrated from Germany to North America in the early 1700’s; we traced the subsequent migration of their descendants, who are now living in at least three different US States. Our findings demonstrate that BAP1 mutations are transmitted among subsequent generations over the course of centuries. This knowledge and methodology is being used to identify additional branches of the family carrying BAP1 mutations. Our study shows that the application of modern genomic analyses, coupled with “classical” family histories collected by the treating physician, and with genealogical searches, offer a powerful strategy to identify high-risk germline BAP1 mutation carriers that will benefit from genetic counseling and early detection cancer screening.
Zdroje
1. Baumann F, Ambrosi JP, Carbone M. Asbestos is not just asbestos: an unrecognised health hazard. The Lancet Oncology. 2013;14(7):576–8. Epub 2013/06/04. doi: 10.1016/S1470-2045(13)70257-2 23725699
2. Roushdy-Hammady I, Siegel J, Emri S, Testa JR, Carbone M. Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet. 2001;357(9254):444–5. Epub 2001/03/29. 11273069
3. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–5. Epub 2011/08/30. doi: 10.1038/ng.912 21874000
4. Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. Journal of medical genetics. 2011;48(12):856–9. doi: 10.1136/jmedgenet-2011-100156 21941004
5. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A, Wang S, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 2012;44(7):751–9. doi: 10.1038/ng.2323 22683710
6. de la Fouchardiere A, Cabaret O, Savin L, Combemale P, Schvartz H, Penet C, et al. Germline BAP1 mutations predispose also to multiple basal cell carcinomas. Clinical genetics. 2014.
7. Carbone M, Korb Ferris L, Baumann F, Napolitano A, Lum CA, Flores EG, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 2012;10(1):179. Epub 2012/09/01.
8. Piris A, Mihm MC Jr., Hoang MP. BAP1 and BRAFV600E expression in benign and malignant melanocytic proliferations. Human pathology. 2015;46(2):239–45. doi: 10.1016/j.humpath.2014.10.015 25479927
9. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nat Rev Cancer. 2013;13(3):153–9. Epub 2013/04/04. 23550303
10. Cybulski C, Nazarali S, Narod SA. Multiple primary cancers as a guide to heritability. International journal of cancer Journal international du cancer. 2014;135(8):1756–63. doi: 10.1002/ijc.28988 24945890
11. Lee HS, Lee SA, Hur SK, Seo JW, Kwon J. Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nature communications. 2014;5:5128. doi: 10.1038/ncomms6128 25283999
12. Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(1):285–90. doi: 10.1073/pnas.1309085110 24347639
13. Yu H, Mashtalir N, Daou S, Hammond-Martel I, Ross J, Sui G, et al. The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Molecular and cellular biology. 2010;30(21):5071–85. doi: 10.1128/MCB.00396-10 20805357
14. Eletr ZM, Wilkinson KD. An emerging model for BAP1's role in regulating cell cycle progression. Cell biochemistry and biophysics. 2011;60(1–2):3–11. doi: 10.1007/s12013-011-9184-6 21484256
15. Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature. 2010;465(7295):243–7. doi: 10.1038/nature08966 20436459
16. Ismail IH, Davidson R, Gagne JP, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer research. 2014;74(16):4282–94. doi: 10.1158/0008-5472.CAN-13-3109 24894717
17. Ventii KH, Devi NS, Friedrich KL, Chernova TA, Tighiouart M, Van Meir EG, et al. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer research. 2008;68(17):6953–62. doi: 10.1158/0008-5472.CAN-08-0365 18757409
18. Baumann F, Flores E, Napolitano A, Kanodia S, Taioli E, Pass H, et al. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis. 2015;36(1):76–81. doi: 10.1093/carcin/bgu227 25380601
19. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi: 10.1038/nature11632 23128226
20. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9. 16862161
21. Voight BF, Pritchard JK. Confounding from cryptic relatedness in case-control association studies. PLoS genetics. 2005;1(3):e32. 16151517
22. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of human genetics. 2007;81(3):559–75. 17701901
23. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28(24):3326–8. doi: 10.1093/bioinformatics/bts606 23060615
24. Delaneau O, Howie B, Cox AJ, Zagury JF, Marchini J. Haplotype estimation using sequencing reads. American journal of human genetics. 2013;93(4):687–96. doi: 10.1016/j.ajhg.2013.09.002 24094745
25. Browning BL, Browning SR. Detecting identity by descent and estimating genotype error rates in sequence data. American journal of human genetics. 2013;93(5):840–51. doi: 10.1016/j.ajhg.2013.09.014 24207118
26. Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, et al. High Incidence of Somatic BAP1 alterations in sporadic malignant mesothelioma. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2015;10(4):565–76.
27. Rusch A, Ziltener G, Nackaerts K, Weder W, Stahel RA, Felley-Bosco E. Prevalence of BRCA-1 associated protein 1 germline mutation in sporadic malignant pleural mesothelioma cases. Lung cancer. 2015;87(1):77–9. doi: 10.1016/j.lungcan.2014.10.017 25468148
28. Carbone M, Klein G, Gruber J, Wong M. Modern criteria to establish human cancer etiology. Cancer research. 2004;64(15):5518–24. 15289363
29. Napolitano A, Pellegrini L, Dey A, Larson D, Tanji M, Flores EG, et al. Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma. Oncogene. 2015.
30. Cebulla CM, Binkley EM, Pilarski R, Massengill JB, Rai K, Liebner DA, et al. Analysis of BAP1 Germline Gene Mutation in Young Uveal Melanoma Patients. Ophthalmic genetics. 2015;36(2):126–31. doi: 10.3109/13816810.2015.1010734 25687217
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- "Women Who Don't Give a Crap"
- A Point Mutation in Suppressor of Cytokine Signalling 2 () Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model
- Data Sharing Policy: In Pursuit of Functional Utility
- Catching a (Double-Strand) Break: The Rad51 and Dmc1 Strand Exchange Proteins Can Co-occupy Both Ends of a Meiotic DNA Double-Strand Break