#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Improved Response to Disasters and Outbreaks by Tracking Population Movements with Mobile Phone Network Data: A Post-Earthquake Geospatial Study in Haiti


Background:
Population movements following disasters can cause important increases in morbidity and mortality. Without knowledge of the locations of affected people, relief assistance is compromised. No rapid and accurate method exists to track population movements after disasters. We used position data of subscriber identity module (SIM) cards from the largest mobile phone company in Haiti (Digicel) to estimate the magnitude and trends of population movements following the Haiti 2010 earthquake and cholera outbreak.

Methods and Findings:
Geographic positions of SIM cards were determined by the location of the mobile phone tower through which each SIM card connects when calling. We followed daily positions of SIM cards 42 days before the earthquake and 158 days after. To exclude inactivated SIM cards, we included only the 1.9 million SIM cards that made at least one call both pre-earthquake and during the last month of study. In Port-au-Prince there were 3.2 persons per included SIM card. We used this ratio to extrapolate from the number of moving SIM cards to the number of moving persons. Cholera outbreak analyses covered 8 days and tracked 138,560 SIM cards.

An estimated 630,000 persons (197,484 Digicel SIM cards), present in Port-au-Prince on the day of the earthquake, had left 19 days post-earthquake. Estimated net outflow of people (outflow minus inflow) corresponded to 20% of the Port-au-Prince pre-earthquake population. Geographic distribution of population movements from Port-au-Prince corresponded well with results from a large retrospective, population-based UN survey. To demonstrate feasibility of rapid estimates and to identify areas at potentially increased risk of outbreaks, we produced reports on SIM card movements from a cholera outbreak area at its immediate onset and within 12 hours of receiving data.

Conclusions:
Results suggest that estimates of population movements during disasters and outbreaks can be delivered rapidly and with potentially high validity in areas with high mobile phone use.

: Please see later in the article for the Editors' Summary


Vyšlo v časopise: Improved Response to Disasters and Outbreaks by Tracking Population Movements with Mobile Phone Network Data: A Post-Earthquake Geospatial Study in Haiti. PLoS Med 8(8): e32767. doi:10.1371/journal.pmed.1001083
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1001083

Souhrn

Background:
Population movements following disasters can cause important increases in morbidity and mortality. Without knowledge of the locations of affected people, relief assistance is compromised. No rapid and accurate method exists to track population movements after disasters. We used position data of subscriber identity module (SIM) cards from the largest mobile phone company in Haiti (Digicel) to estimate the magnitude and trends of population movements following the Haiti 2010 earthquake and cholera outbreak.

Methods and Findings:
Geographic positions of SIM cards were determined by the location of the mobile phone tower through which each SIM card connects when calling. We followed daily positions of SIM cards 42 days before the earthquake and 158 days after. To exclude inactivated SIM cards, we included only the 1.9 million SIM cards that made at least one call both pre-earthquake and during the last month of study. In Port-au-Prince there were 3.2 persons per included SIM card. We used this ratio to extrapolate from the number of moving SIM cards to the number of moving persons. Cholera outbreak analyses covered 8 days and tracked 138,560 SIM cards.

An estimated 630,000 persons (197,484 Digicel SIM cards), present in Port-au-Prince on the day of the earthquake, had left 19 days post-earthquake. Estimated net outflow of people (outflow minus inflow) corresponded to 20% of the Port-au-Prince pre-earthquake population. Geographic distribution of population movements from Port-au-Prince corresponded well with results from a large retrospective, population-based UN survey. To demonstrate feasibility of rapid estimates and to identify areas at potentially increased risk of outbreaks, we produced reports on SIM card movements from a cholera outbreak area at its immediate onset and within 12 hours of receiving data.

Conclusions:
Results suggest that estimates of population movements during disasters and outbreaks can be delivered rapidly and with potentially high validity in areas with high mobile phone use.

: Please see later in the article for the Editors' Summary


Zdroje

1. OCHA, IDMC, Norwegian Refugee Council 2009 Monitoring disaster displacement in the context of climate change Geneva Available: http://www.internaldisplacement.org/8025708F004CFA06/%28httpPublications%29/451D224B41C04246C12576390031FF63?OpenDocument. Accessed 10 October 2010

2. TooleMJWaldmanRJ 1997 The public health aspects of complex emergencies and refugee situations. Annu Rev Public Health 18 283 312

3. SalamaPSpiegelPTalleyLWaldmanR 2004 Lessons learned from complex emergencies over past decade. Lancet 364 1801 1813

4. Goma Epidemiology Group 1995 Public health impact of Rwandan refugee crisis: what happened in Goma, Zaire, in July, 1994? Goma Epidemiology Group. Lancet 345 339 344

5. SchimmerR 2010 Tracking the genocide in Darfur: population displacement as recorded by remote sensing New Haven (Connecticut) Genocide Studies Program, Yale University Available: http://www.yale.edu/gsp/gis-files/darfur Accessed 9 December 2010

6. National Research Council Committe on Population 1998 The demography of forced migration: summary of a workshop Washington (D.C.) National Academy Press

7. BrownVJacquierGCoulombierDBalandineSBelangerF 2001 Rapid assessment of population size by area sampling in disaster situations. Disasters 25 164 171

8. LesterRKaranjaS 2008 Mobile phones: exceptional tools for HIV/AIDS, health, and crisis management. Lancet Infect Dis 8 738 739

9. International Telecommuncation Union 2010 World Telecommunication/ICT Development Report 2010. Monitoring the WSIS targets. A mid-term review Geneva International Telecommuncation Union Available: http://www.itu.int/en/publications/ITU-D/pages/publications.aspx?parent=D-IND-WTDR-2010&media=electronic. Accessed 5 May 2011

10. International Telecommunication Union 2010 Measuring the information society Geneva International Telecommuncation Union Available: http://www.itu.int/ITU-D/ict/publications/idi/2010/index.html Accessed: 5 May 2011

11. US Census Bureau's International database 2011 Available: http://www.census.gov/ipc/www/idb/region.php. Accessed 5 May 2011

12. YangCHYangJLuoXSGongP 2009 Use of mobile phones in an emergency reporting system for infectious disease surveillance after the Sichuan earthquake in China. Bull World Health Organ 87 619 623

13. ZookMGrahamMSheltonTGormanS 2010 Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian Earthquake. World Medical & Health Policy 2 Article 2

14. GonzalezMCHidalgoCABarabasiAL 2008 Understanding individual human mobility patterns. Nature 453 779 782

15. WesolowskiAEagleN 2010 Parameterizing the dynamics of slums. AAAI Spring Symposium 2010 on Artificial Intelligence for Development. Available: http://ai-d.org/pdfs/Wesolowski.pdf. Accessed 9 November 2010

16. AhasRAasaARooseAMarkUSilmS 2008 Evaluating passive mobile positioning data for tourism surveys: an Estonian case study. Tourism Manage 29 469 486

17. United States Department of State HIU 2010 Haiti: population movements outside of Port-au-Prince. Available: http://reliefweb.int/rw/rwb.nsf/db900sid/MNIN-822MR8?OpenDocument. Accessed 10 December 2010

18. HarrisJBLarocqueRCCharlesRCMazumderRNKhanAI 2010 Cholera's western front. Lancet 376 1961 1965

19. Le Nouvelliste 2010 Digicel s'impatiente pour sa licence de fournisseur d'accès internet. Available: http://www.lenouvelliste.com/article.php?PubID=1&ArticleID=77702. Accessed 5 May 2011

20. La Presse Affaires 2010 Réseau cellulaire Digicel en Haïti: 2,2 millions d'abonnés en quatre ans. Available: http://lapresseaffaires.cyberpresse.ca/economie/international/201010/08/01-4330651-reseau-cellulaire-digicel-en-haiti-22-millions-dabonnes-en-quatre-ans.php. Accessed 5 May 2011

21. David Sharpe Digicel Haiti 2010 Port-au-Prince

22. MINUSTAH GIS, UN Cartographic Section 2007 Minimum operational dataset v 1.4: shapefiles. CNIGS/MINUSTAH

23. Institut haïtien de statistique et d'informatique 2009 Population totale, population de 18 ans et plus ménages et densités estimés en 2009. Port-au-Prince. Available: http://www.ihsi.ht/pdf/projection/POPTOTAL&MENAGDENS_ESTIM2009.pdf. Accessed 6 May 2010

24. BlumenstockJEagleN 2010 Mobile divides: gender, socioeconomic status, and mobile phone use in Rwanda. Proceedings of the 4th International Conference on Information and Communication Technologies and Development. Available: http://jblumenstock.com/research.php. Accessed 5 May 2011

25. Gabriel Bidegain UNFPA Haiti 2010 Port-au-Prince

26. UNFPA-Haiti 2010 Enquete sur les migrations internes: phase I: Aire metropolitaine de Port-au-Prince, draft report Port-au-Prince UNFPA-Haiti

27. UNOCHA 2010 Population movements out of Port-au-Prince - 17 February 2010. Available: http://www.reliefweb.int/rw/rwb.nsf/db900sid/MNIN-82GQYS?OpenDocument&query=population%20movement&emid=EQ-2010-000009-HTI. Accessed 5 May 2010

28. BalcanDColizzaVGoncalvesBHuHRamascoJJ 2009 Multiscale mobility networks and the spatial spreading of infectious diseases. Proc Natl Acad Sci U S A 106 21484 21489

29. WeissRAMcMichaelAJ 2004 Social and environmental risk factors in the emergence of infectious diseases. Nat Med 10 S70 S76

30. RileyS 2007 Large-scale spatial-transmission models of infectious disease. Science 316 1298 1301

31. OCHA 2010 Haiti: cholera cumulative cases since 20 October 2010 (as of 4 Dec 2010). Available: http://reliefweb.int/rw/rwb.nsf/db900sid/RKRR-8BWUGF?OpenDocument. Accessed 8 January 2011

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2011 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#