#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Diagnosing Severe Falciparum Malaria in Parasitaemic African Children: A Prospective Evaluation of Plasma HRP2 Measurement


Background:
In African children, distinguishing severe falciparum malaria from other severe febrile illnesses with coincidental Plasmodium falciparum parasitaemia is a major challenge. P. falciparum histidine-rich protein 2 (PfHRP2) is released by mature sequestered parasites and can be used to estimate the total parasite burden. We investigated the prognostic significance of plasma PfHRP2 and used it to estimate the malaria-attributable fraction in African children diagnosed with severe malaria.

Methods and Findings:
Admission plasma PfHRP2 was measured prospectively in African children (from Mozambique, The Gambia, Kenya, Tanzania, Uganda, Rwanda, and the Democratic Republic of the Congo) aged 1 month to 15 years with severe febrile illness and a positive P. falciparum lactate dehydrogenase (pLDH)-based rapid test in a clinical trial comparing parenteral artesunate versus quinine (the AQUAMAT trial, ISRCTN 50258054). In 3,826 severely ill children, Plasmadium falciparum PfHRP2 was higher in patients with coma (p = 0.0209), acidosis (p<0.0001), and severe anaemia (p<0.0001). Admission geometric mean (95%CI) plasma PfHRP2 was 1,611 (1,350–1,922) ng/mL in fatal cases (n = 381) versus 1,046 (991–1,104) ng/mL in survivors (n = 3,445, p<0.0001), without differences in parasitaemia as assessed by microscopy. There was a U-shaped association between log10 plasma PfHRP2 and risk of death. Mortality increased 20% per log10 increase in PfHRP2 above 174 ng/mL (adjusted odds ratio [AOR] 1.21, 95%CI 1.05–1.39, p = 0.009). A mechanistic model assuming a PfHRP2-independent risk of death in non-malaria illness closely fitted the observed data and showed malaria-attributable mortality less than 50% with plasma PfHRP2≤174 ng/mL. The odds ratio (OR) for death in artesunate versus quinine-treated patients was 0.61 (95%CI 0.44–0.83, p = 0.0018) in the highest PfHRP2 tertile, whereas there was no difference in the lowest tertile (OR 1.05; 95%CI 0.69–1.61; p = 0.82). A limitation of the study is that some conclusions are drawn from a mechanistic model, which is inherently dependent on certain assumptions. However, a sensitivity analysis of the model indicated that the results were robust to a plausible range of parameter estimates. Further studies are needed to validate our findings.

Conclusions:
Plasma PfHRP2 has prognostic significance in African children with severe falciparum malaria and provides a tool to stratify the risk of “true” severe malaria-attributable disease as opposed to other severe illnesses in parasitaemic African children.



Please see later in the article for the Editors' Summary.


Vyšlo v časopise: Diagnosing Severe Falciparum Malaria in Parasitaemic African Children: A Prospective Evaluation of Plasma HRP2 Measurement. PLoS Med 9(8): e32767. doi:10.1371/journal.pmed.1001297
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1001297

Souhrn

Background:
In African children, distinguishing severe falciparum malaria from other severe febrile illnesses with coincidental Plasmodium falciparum parasitaemia is a major challenge. P. falciparum histidine-rich protein 2 (PfHRP2) is released by mature sequestered parasites and can be used to estimate the total parasite burden. We investigated the prognostic significance of plasma PfHRP2 and used it to estimate the malaria-attributable fraction in African children diagnosed with severe malaria.

Methods and Findings:
Admission plasma PfHRP2 was measured prospectively in African children (from Mozambique, The Gambia, Kenya, Tanzania, Uganda, Rwanda, and the Democratic Republic of the Congo) aged 1 month to 15 years with severe febrile illness and a positive P. falciparum lactate dehydrogenase (pLDH)-based rapid test in a clinical trial comparing parenteral artesunate versus quinine (the AQUAMAT trial, ISRCTN 50258054). In 3,826 severely ill children, Plasmadium falciparum PfHRP2 was higher in patients with coma (p = 0.0209), acidosis (p<0.0001), and severe anaemia (p<0.0001). Admission geometric mean (95%CI) plasma PfHRP2 was 1,611 (1,350–1,922) ng/mL in fatal cases (n = 381) versus 1,046 (991–1,104) ng/mL in survivors (n = 3,445, p<0.0001), without differences in parasitaemia as assessed by microscopy. There was a U-shaped association between log10 plasma PfHRP2 and risk of death. Mortality increased 20% per log10 increase in PfHRP2 above 174 ng/mL (adjusted odds ratio [AOR] 1.21, 95%CI 1.05–1.39, p = 0.009). A mechanistic model assuming a PfHRP2-independent risk of death in non-malaria illness closely fitted the observed data and showed malaria-attributable mortality less than 50% with plasma PfHRP2≤174 ng/mL. The odds ratio (OR) for death in artesunate versus quinine-treated patients was 0.61 (95%CI 0.44–0.83, p = 0.0018) in the highest PfHRP2 tertile, whereas there was no difference in the lowest tertile (OR 1.05; 95%CI 0.69–1.61; p = 0.82). A limitation of the study is that some conclusions are drawn from a mechanistic model, which is inherently dependent on certain assumptions. However, a sensitivity analysis of the model indicated that the results were robust to a plausible range of parameter estimates. Further studies are needed to validate our findings.

Conclusions:
Plasma PfHRP2 has prognostic significance in African children with severe falciparum malaria and provides a tool to stratify the risk of “true” severe malaria-attributable disease as opposed to other severe illnesses in parasitaemic African children.



Please see later in the article for the Editors' Summary.


Zdroje

1. EnglishM, PuntJ, MwangiI, McHughK, MarshK (1996) Clinical overlap between malaria and severe pneumonia in Africa children in hospital. Trans R Soc Trop Med Hyg 90: 658–662.

2. BerkleyJ, MwarumbaS, BramhamK, LoweB, MarshK (1999) Bacteraemia complicating severe malaria in children. Trans R Soc Trop Med 93: 283–286.

3. EvansJA, AduseiA, TimmannC, MayJ, MackD, et al. (2004) High mortality of infant bacteraemia clinically indistinguishable from severe malaria. QJM 97: 591–597.

4. TaylorTE, FuWJ, CarrRA, WhittenRO, MuellerJS, et al. (2004) Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 10: 143–145.

5. BerkleyJA, LoweBS, MwangiI, WilliamsT, BauniE, et al. (2005) Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med 352: 39–47.

6. ReyburnH, MbatiaR, DrakeleyC, CarneiroI, MwakasungulaE, et al. (2004) Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study. BMJ 329: 1212.

7. DondorpAM, PongponratnE, WhiteNJ (2004) Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop 89: 309–317.

8. MarshK, ForsterD, WaruiruC, MwangiI, WinstanleyM, et al. (1995) Indicators of life-threatening malaria in African children. N Engl J Med 332: 1399–1404.

9. JaffarS, Van HensbroekMB, PalmerA, SchneiderG, GreenwoodB (1997) Predictors of a fatal outcome following childhood cerebral malaria. Am J Trop Med Hyg 57: 20–24.

10. SilamutK, WhiteNJ (1993) Relation of the stage of parasite development in the peripheral blood to prognosis in severe falciparum malaria. Trans R Soc Trop Med Hyg 87: 436–443.

11. NguyenPH, DayN, PramTD, FergusonDJ, WhiteNJ (1995) Intraleucocytic malaria pigment and prognosis in severe malaria. Trans R Soc Trop Med Hyg 89: 200–204.

12. HowardRJ, UniS, AikawaM, AleySB, LeechJH, et al. (1986) Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes. J Cell Biol 103: 1269–1277.

13. KifudeCM, RajasekariahHG, SullivanDJJr, StewartVA, AngovE, et al. (2008) Enzyme-linked immunosorbent assay for detection of Plasmodium falciparum histidine-rich protein 2 in blood, plasma, and serum. Clin Vaccine Immunol 15: 1012–1018.

14. DesakornV, DondorpAM, SilamutK, PongtavornpinyoW, SahassanandaD, et al. (2005) Stage-dependent production and release of histidine-rich protein 2 by Plasmodium falciparum. Trans R Soc Trop Med Hyg 99: 517–524.

15. DondorpAM, DesakornV, PongtavornpinyoW, SahassanandaD, SilamutK, et al. (2005) Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med 2: e204 doi:10.1371/journal.pmed.0020204.

16. YeoTW, LampahDA, GitawatiR, TjitraE, KenangalemE, et al. (2008) Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria. Proc Natl Acad Sci USA 105: 17097–17102.

17. DondorpAM, FanelloCI, HendriksenIC, GomesE, SeniA, et al. (2010) Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376: 1647–1657.

18. GreenwoodBM, ArmstrongJR (1991) Comparison of two simple methods for determining malaria parasite density. Trans R Soc Trop Med Hyg 85: 186–188.

19. PlancheT, KrishnaS, KombilaM, EngelK, FaucherJF, et al. (2001) Comparison of methods for the rapid laboratory assessment of children with malaria. Am J Trop Med Hyg 65: 599–602.

20. BakerJ, GattonML, PetersJ, HoMF, McCarthyJS, et al. (2011) Transcription and expression of Plasmodium falciparum histidine-rich proteins in different stages and strains: implications for rapid diagnostic tests. PLoS One 6: e22593 doi:10.1371/journal.pone.0022593.

21. DeansAM, LykeKE, TheraMA, PloweCV, KoneA, et al. (2006) Low multiplication rates of African Plasmodium falciparum isolates and lack of association of multiplication rate and red blood cell selectivity with malaria virulence. Am J Trop Med Hyg 74: 554–563.

22. Le ScanfC, Vigan-WomasI, ContaminH, GuillotteM, BischoffE, et al. (2008) Rosetting is associated with increased Plasmodium falciparum in vivo multiplication rate in the Saimiri sciureus monkey. Microbes Infect 10: 447–451.

23. ChotivanichK, UdomsangpetchR, SimpsonJA, NewtonP, PukrittayakameeS, et al. (2000) Parasite multiplication potential and the severity of Falciparum malaria. J Infect Dis 181: 1206–1209.

24. SimpsonJA, AaronsL, CollinsWE, JefferyGM, WhiteNJ (2002) Population dynamics of untreated Plasmodium falciparum malaria within the adult human host during the expansion phase of the infection. Parasitology 124: 247–263.

25. SilamutK, PhuNH, WhittyC, TurnerGD, LouwrierK, et al. (1999) A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 155: 395–410.

26. StataCorp (2007) Stata 10 Base Reference Manual (L): College Station, TX: Stata Press.

27. BerkleyJA, BejonP, MwangiT, GwerS, MaitlandK, et al. (2009) HIV infection, malnutrition, and invasive bacterial infection among children with severe malaria. Clin Infect Dis 49: 336–343.

28. DondorpAM, InceC, CharunwatthanaP, HansonJ, van KuijenA, et al. (2008) Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J Infect Dis 197: 79–84.

29. WhiteVA, LewallenS, BeareNA, MolyneuxME, TaylorTE (2009) Retinal pathology of pediatric cerebral malaria in Malawi. PLoS One 4: e4317 doi:10.1371/journal.pone.0004317.

30. BeareNA, HardingSP, TaylorTE, LewallenS, MolyneuxME (2009) Perfusion abnormalities in children with cerebral malaria and malarial retinopathy. J Infect Dis 199: 263–271.

31. MacPhersonGG, WarrellMJ, WhiteNJ, LooareesuwanS, WarrellDA (1985) Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 119: 385–401.

32. DondorpA, NostenF, StepniewskaK, DayN, WhiteN (2005) Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366: 717–725.

33. BejonP, BerkleyJA, MwangiT, OgadaE, MwangiI, et al. (2007) Defining childhood severe falciparum malaria for intervention studies. PLoS Med 4: e251 doi: 10.1371/journal.pmed.0040251.

34. BurtonM, Nyong'oO, BurtonK, JohnW, InkoomE, et al. (2004) Retinopathy in Gambian children admitted to hospital with malaria. Trop Doct 34: 214–218.

35. BeareNA, TaylorTE, HardingSP, LewallenS, MolyneuxME (2006) Malarial retinopathy: a newly established diagnostic sign in severe malaria. Am J Trop Med Hyg 75: 790–797.

36. EssumanVA, Ntim-AmponsahCT, AstrupBS, AdjeiGO, KurtzhalsJA, et al. (2010) Retinopathy in severe malaria in Ghanaian children–overlap between fundus changes in cerebral and non-cerebral malaria. Malar J 9: 232.

37. BeareNA, SouthernC, ChaliraC, TaylorTE, MolyneuxME, et al. (2004) Prognostic significance and course of retinopathy in children with severe malaria. Arch Ophthalmol 122: 1141–1147.

38. BiswasS, TomarD, RaoDN (2005) Investigation of the kinetics of histidine-rich protein 2 and of the antibody responses to this antigen, in a group of malaria patients from India. Ann Trop Med Parasitol 99: 553–562.

39. AbekuTA, KristanM, JonesC, BeardJ, MuellerDH, et al. (2008) Determinants of the accuracy of rapid diagnostic tests in malaria case management: evidence from low and moderate transmission settings in the East African highlands. Malar J 7: 202.

40. ManningL, LamanM, StanisicD, Rosanas-UrgellA, BonaC, et al. (2011) Plasma Plasmodium falciparum histidine-rich protein-2 concentrations do not reflect severity of malaria in Papua new guinean children. Clin Infect Dis 52: 440–446.

41. BakerJ, McCarthyJ, GattonM, KyleDE, BelizarioV, et al. (2005) Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. J Infect Dis 192: 870–877.

42. MartinSK, RajasekariahGH, AwindaG, WaitumbiJ, KifudeC (2009) Unified parasite lactate dehydrogenase and histidine-rich protein ELISA for quantification of Plasmodium falciparum. Am J Trop Med Hyg 80: 516–522.

43. BakerJ, HoMF, PelecanosA, GattonM, ChenN, et al. (2010) Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests. Malar J 9: 129.

44. HouzeS, HubertV, Le PessecG, Le BrasJ, ClainJ (2011) Combined deletions of pfhrp2 and pfhrp3 genes result in Plasmodium falciparum malaria false-negative rapid diagnostic test. J Clin Microbiol 49: 2694–2696.

45. KoitaOA, DoumboOK, OuattaraA, TallLK, KonareA, et al. (2012) False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 gene. Am J Trop Med Hyg 86: 194–198.

46. WellemsTE, WallikerD, SmithCL, do RosarioVE, MaloyWL, et al. (1987) A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell 49: 633–642.

47. Walker-JonahA, DolanSA, GwadzRW, PantonLJ, WellemsTE (1992) An RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic cross. Mol Biochem Parasitol 51: 313–320.

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2012 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#