Marburg Virus Evades Interferon Responses by a Mechanism Distinct from Ebola Virus
Previous studies have demonstrated that Marburg viruses (MARV) and Ebola viruses (EBOV) inhibit interferon (IFN)-α/β signaling but utilize different mechanisms. EBOV inhibits IFN signaling via its VP24 protein which blocks the nuclear accumulation of tyrosine phosphorylated STAT1. In contrast, MARV infection inhibits IFNα/β induced tyrosine phosphorylation of STAT1 and STAT2. MARV infection is now demonstrated to inhibit not only IFNα/β but also IFNγ-induced STAT phosphorylation and to inhibit the IFNα/β and IFNγ-induced tyrosine phosphorylation of upstream Janus (Jak) family kinases. Surprisingly, the MARV matrix protein VP40, not the MARV VP24 protein, has been identified to antagonize Jak and STAT tyrosine phosphorylation, to inhibit IFNα/β or IFNγ-induced gene expression and to inhibit the induction of an antiviral state by IFNα/β. Global loss of STAT and Jak tyrosine phosphorylation in response to both IFNα/β and IFNγ is reminiscent of the phenotype seen in Jak1-null cells. Consistent with this model, MARV infection and MARV VP40 expression also inhibit the Jak1-dependent, IL-6-induced tyrosine phosphorylation of STAT1 and STAT3. Finally, expression of MARV VP40 is able to prevent the tyrosine phosphorylation of Jak1, STAT1, STAT2 or STAT3 which occurs following over-expression of the Jak1 kinase. In contrast, MARV VP40 does not detectably inhibit the tyrosine phosphorylation of STAT2 or Tyk2 when Tyk2 is over-expressed. Mutation of the VP40 late domain, essential for efficient VP40 budding, has no detectable impact on inhibition of IFN signaling. This study shows that MARV inhibits IFN signaling by a mechanism different from that employed by the related EBOV. It identifies a novel function for the MARV VP40 protein and suggests that MARV may globally inhibit Jak1-dependent cytokine signaling.
Vyšlo v časopise:
Marburg Virus Evades Interferon Responses by a Mechanism Distinct from Ebola Virus. PLoS Pathog 6(1): e32767. doi:10.1371/journal.ppat.1000721
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000721
Souhrn
Previous studies have demonstrated that Marburg viruses (MARV) and Ebola viruses (EBOV) inhibit interferon (IFN)-α/β signaling but utilize different mechanisms. EBOV inhibits IFN signaling via its VP24 protein which blocks the nuclear accumulation of tyrosine phosphorylated STAT1. In contrast, MARV infection inhibits IFNα/β induced tyrosine phosphorylation of STAT1 and STAT2. MARV infection is now demonstrated to inhibit not only IFNα/β but also IFNγ-induced STAT phosphorylation and to inhibit the IFNα/β and IFNγ-induced tyrosine phosphorylation of upstream Janus (Jak) family kinases. Surprisingly, the MARV matrix protein VP40, not the MARV VP24 protein, has been identified to antagonize Jak and STAT tyrosine phosphorylation, to inhibit IFNα/β or IFNγ-induced gene expression and to inhibit the induction of an antiviral state by IFNα/β. Global loss of STAT and Jak tyrosine phosphorylation in response to both IFNα/β and IFNγ is reminiscent of the phenotype seen in Jak1-null cells. Consistent with this model, MARV infection and MARV VP40 expression also inhibit the Jak1-dependent, IL-6-induced tyrosine phosphorylation of STAT1 and STAT3. Finally, expression of MARV VP40 is able to prevent the tyrosine phosphorylation of Jak1, STAT1, STAT2 or STAT3 which occurs following over-expression of the Jak1 kinase. In contrast, MARV VP40 does not detectably inhibit the tyrosine phosphorylation of STAT2 or Tyk2 when Tyk2 is over-expressed. Mutation of the VP40 late domain, essential for efficient VP40 budding, has no detectable impact on inhibition of IFN signaling. This study shows that MARV inhibits IFN signaling by a mechanism different from that employed by the related EBOV. It identifies a novel function for the MARV VP40 protein and suggests that MARV may globally inhibit Jak1-dependent cytokine signaling.
Zdroje
1. BrayM
GeisbertTW
2005 Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever. Int J Biochem Cell Biol 37 1560 1566
2. ToughDF
2004 Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk Lymphoma 45 257 264
3. BironCA
CousensLP
RuzekMC
SuHC
Salazar-MatherTP
1998 Early cytokine responses to viral infections and their roles in shaping endogenous cellular immunity. Adv Exp Med Biol 452 143 149
4. PlataniasLC
2005 Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5 375 386
5. MullerM
BriscoeJ
LaxtonC
GuschinD
ZiemieckiA
1993 The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature 366 129 135
6. YangCH
MurtiA
ValentineWJ
DuZ
PfefferLM
2005 Interferon alpha activates NF-kappaB in JAK1-deficient cells through a TYK2-dependent pathway. J Biol Chem 280 25849 25853
7. RodigSJ
MerazMA
WhiteJM
LampePA
RileyJK
1998 Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93 373 383
8. GuschinD
RogersN
BriscoeJ
WitthuhnB
WatlingD
1995 A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. Embo J 14 1421 1429
9. MühlbergerE
2007 Filovirus replication and transcription. Future Virology 2 205 215
10. LicataJM
Simpson-HolleyM
WrightNT
HanZ
ParagasJ
2003 Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. J Virol 77 1812 1819
11. NodaT
EbiharaH
MuramotoY
FujiiK
TakadaA
2006 Assembly and budding of Ebolavirus. PLoS Pathog 2 e99 doi:10.1371/journal.ppat.0020099
12. YamayoshiS
NodaT
EbiharaH
GotoH
MorikawaY
2008 Ebola virus matrix protein VP40 uses the COPII transport system for its intracellular transport. Cell Host Microbe 3 168 177
13. KolesnikovaL
StreckerT
MoritaE
ZieleckiF
MittlerE
2009 Vacuolar protein sorting pathway contributes to the release of Marburg virus. J Virol 83 2327 2337
14. TimminsJ
SchoehnG
Ricard-BlumS
ScianimanicoS
VernetT
2003 Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. J Mol Biol 326 493 502
15. SwensonDL
WarfieldKL
KuehlK
LarsenT
HeveyMC
2004 Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunol Med Microbiol 40 27 31
16. BavariS
BosioCM
WiegandE
RuthelG
WillAB
2002 Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195 593 602
17. Martin-SerranoJ
ZangT
BieniaszPD
2001 HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7 1313 1319
18. UrataS
NodaT
KawaokaY
MorikawaS
YokosawaH
2007 Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP. J Virol 81 4895 4899
19. BambergS
KolesnikovaL
MöllerP
KlenkHD
BeckerS
2005 VP24 of Marburg virus influences formation of infectious particles. J Virol 79 13421 13433
20. HanZ
BoshraH
SunyerJO
ZwiersSH
ParagasJ
2003 Biochemical and functional characterization of the Ebola virus VP24 protein: implications for a role in virus assembly and budding. J Virol 77 1793 1800
21. LicataJM
JohnsonRF
HanZ
HartyRN
2004 Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J Virol 78 7344 7351
22. HoenenT
GrosethA
KolesnikovaL
TheriaultS
EbiharaH
2006 Infection of naive target cells with virus-like particles: implications for the function of ebola virus VP24. J Virol 80 7260 7264
23. NodaT
HalfmannP
SagaraH
KawaokaY
2007 Regions in Ebola virus VP24 that are important for nucleocapsid formation. J Infect Dis 196 Suppl 2 S247 250
24. VolchkovVE
ChepurnovAA
VolchkovaVA
TernovojVA
KlenkHD
2000 Molecular characterization of guinea pig-adapted variants of Ebola virus. Virology 277 147 155
25. EbiharaH
TakadaA
KobasaD
JonesS
NeumannG
2006 Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2 e73 doi:10.1371/journal.ppat.0020073
26. KaletskyRL
FrancicaJR
Agrawal-GamseC
BatesP
2009 Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci U S A 106 2886 2891
27. GuptaM
MahantyS
AhmedR
RollinPE
2001 Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro. Virology 284 20 25
28. HarcourtBH
SanchezA
OffermannMK
1999 Ebola virus selectively inhibits responses to interferons, but not to interleukin-1beta, in endothelial cells. J Virol 73 3491 3496
29. HartmanAL
LingL
NicholST
HibberdML
2008 Whole-genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J Virol 82 5348 5358
30. KashJC
MühlbergerE
CarterV
GroschM
PerwitasariO
2006 Global suppression of the host antiviral response by Ebola- and Marburgviruses: increased antagonism of the type I interferon response is associated with enhanced virulence. J Virol 80 3009 3020
31. BaslerCF
WangX
MühlbergerE
VolchkovV
ParagasJ
2000 The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97 12289 12294
32. HartmanAL
TownerJS
NicholST
2004 A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. Virology 328 177 184
33. ReidSP
LeungLW
HartmanAL
MartinezO
ShawML
2006 Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. J Virol 80 5156 5167
34. ReidSP
ValmasC
MartinezO
SanchezFM
BaslerCF
2007 Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 81 13469 13477
35. SanchezA
KileyMP
HollowayBP
AuperinDD
1993 Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res 29 215 240
36. MühlbergerE
WeikM
VolchkovVE
KlenkHD
BeckerS
1999 Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 73 2333 2342
37. EnterleinS
SchmidtKM
SchümannM
ConradD
KrählingV
2009 The marburg virus 3′ noncoding region structurally and functionally differs from that of ebola virus. J Virol 83 4508 4519
38. SanchezA
TrappierSG
MahyBW
PetersCJ
NicholST
1996 The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A 93 3602 3607
39. VolchkovVE
BeckerS
VolchkovaVA
TernovojVA
KotovAN
1995 GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214 421 430
40. HuangY
XuL
SunY
NabelGJ
2002 The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 10 307 316
41. KolesnikovaL
MühlbergerE
RyabchikovaE
BeckerS
2000 Ultrastructural organization of recombinant Marburg virus nucleoprotein: comparison with Marburg virus inclusions. J Virol 74 3899 3904
42. MühlbergerE
2004 Genome organization, replication, and transcription of filoviruses.
H.-DFeldmann HaK
Ebola and Marburg viruses: Molecular and cellular biology Wymondham, Norfolk Horizon Scientific Press 1 12
43. WiesmannC
BarrKJ
KungJ
ZhuJ
ErlansonDA
2004 Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 11 730 737
44. ShawML
Garcia-SastreA
PaleseP
BaslerCF
2004 Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J Virol 78 5633 5641
45. BrzozkaK
FinkeS
ConzelmannKK
2006 Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. J Virol 80 2675 2683
46. BestSM
MorrisKL
ShannonJG
RobertsonSJ
MitzelDN
2005 Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 79 12828 12839
47. MatsusakaT
FujikawaK
NishioY
MukaidaN
MatsushimaK
1993 Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci U S A 90 10193 10197
48. KunschC
RosenCA
1993 NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 13 6137 6146
49. QuelleFW
ThierfelderW
WitthuhnBA
TangB
CohenS
1995 Phosphorylation and activation of the DNA binding activity of purified Stat1 by the Janus protein-tyrosine kinases and the epidermal growth factor receptor. J Biol Chem 270 20775 20780
50. JahrlingPB
GeisbertTW
GeisbertJB
SwearengenJR
BrayM
1999 Evaluation of immune globulin and recombinant interferon-alpha2b for treatment of experimental Ebola virus infections. J Infect Dis 179 Suppl 1 S224 234
51. TownerJS
KhristovaML
SealyTK
VincentMJ
EricksonBR
2006 Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J Virol 80 6497 6516
52. LeroyEM
KumulunguiB
PourrutX
RouquetP
HassaninA
2005 Fruit bats as reservoirs of Ebola virus. Nature 438 575 576
53. PourrutX
SourisM
TownerJS
RollinPE
NicholST
2009 Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect Dis 9 159
54. TownerJS
AmmanBR
SealyTK
CarrollSA
ComerJA
2009 Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 5 e1000536 doi:10.1371/journal.ppat.1000536
55. BarretteRW
MetwallySA
RowlandJM
XuL
ZakiSR
2009 Discovery of swine as a host for the Reston ebolavirus. Science 325 204 206
56. PanchalRG
BradfuteSB
PeyserBD
WarfieldKL
RuthelG
2009 Reduced levels of protein tyrosine phosphatase CD45 protect mice from the lethal effects of Ebola virus infection. Cell Host Microbe 6 162 173
57. XuD
QuCK
2008 Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci 13 4925 4932
58. BaslerCF
MikulasovaA
Martinez-SobridoL
ParagasJ
MühlbergerE
2003 The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol 77 7945 7956
59. CardenasWB
LooYM
Gale MJr
HartmanAL
KimberlinCR
2006 Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 80 5168 5178
60. PrinsKC
CardenasWB
BaslerCF
2009 Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J Virol 83 3069 3077
61. HensleyLE
YoungHA
JahrlingPB
GeisbertTW
2002 Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. Immunol Lett 80 169 179
62. LanfordRE
GuerraB
LeeH
AverettDR
PfeifferB
2003 Antiviral effect and virus-host interactions in response to alpha interferon, gamma interferon, poly(i)-poly(c), tumor necrosis factor alpha, and ribavirin in hepatitis C virus subgenomic replicons. J Virol 77 1092 1104
63. MillerDM
RahillBM
BossJM
LairmoreMD
DurbinJE
1998 Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J Exp Med 187 675 683
64. CaignardG
GuerboisM
LabernardiereJL
JacobY
JonesLM
2007 Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-alpha/beta signaling. Virology 368 351 362
65. HartyRN
BrownME
WangG
HuibregtseJ
HayesFP
2000 A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci U S A 97 13871 13876
66. RuigrokRW
SchoehnG
DessenA
ForestE
VolchkovV
2000 Structural characterization and membrane binding properties of the matrix protein VP40 of Ebola virus. J Mol Biol 300 103 112
67. KolesnikovaL
RyabchikovaE
ShestopalovA
BeckerS
2007 Basolateral budding of Marburg virus: VP40 retargets viral glycoprotein GP to the basolateral surface. J Infect Dis 196 Suppl 2 S232 236
68. AhmedA
El KossiM
KarimM
RafteryA
El NahasAM
2003 Extracellular matrix changes following renal warm ischemic injury in rats. Transplant Proc 35 101 102
69. FerranMC
Lucas-LenardJM
1997 The vesicular stomatitis virus matrix protein inhibits transcription from the human beta interferon promoter. J Virol 71 371 377
70. BlackBL
LylesDS
1992 Vesicular stomatitis virus matrix protein inhibits host cell-directed transcription of target genes in vivo. J Virol 66 4058 4064
71. HerLS
LundE
DahlbergJE
1997 Inhibition of Ran guanosine triphosphatase-dependent nuclear transport by the matrix protein of vesicular stomatitis virus. Science 276 1845 1848
72. YasudaJ
NakaoM
KawaokaY
ShidaH
2003 Nedd4 regulates egress of Ebola virus-like particles from host cells. J Virol 77 9987 9992
73. McCarthySE
JohnsonRF
ZhangYA
SunyerJO
HartyRN
2007 Role for amino acids 212KLR214 of Ebola virus VP40 in assembly and budding. J Virol 81 11452 11460
74. SakumaT
NodaT
UrataS
KawaokaY
YasudaJ
2009 Inhibition of Lassa and Marburg virus production by tetherin. J Virol 83 2382 2385
75. OkumuraA
PithaPM
HartyRN
2008 ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc Natl Acad Sci U S A 105 3974 3979
76. MalakhovaOA
ZhangDE
2008 ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J Biol Chem 283 8783 8787
77. ParkMS
ShawML
Munoz-JordanJ
CrosJF
NakayaT
2003 Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J Virol 77 1501 1511
78. NiwaH
YamamuraK
MiyazakiJ
1991 Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108 193 199
79. RodriguezJJ
ParisienJP
HorvathCM
2002 Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation. J Virol 76 11476 11483
80. CiancanelliMJ
BaslerCF
2006 Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 80 12070 12078
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 1
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Panton-Valentine Leukocidin Is a Very Potent Cytotoxic Factor for Human Neutrophils
- CD8+ T Cell Control of HIV—A Known Unknown
- Polyoma Virus-Induced Osteosarcomas in Inbred Strains of Mice: Host Determinants of Metastasis
- The Deadly Chytrid Fungus: A Story of an Emerging Pathogen