Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics
Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis.
Vyšlo v časopise:
Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics. PLoS Pathog 6(1): e32767. doi:10.1371/journal.ppat.1000719
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000719
Souhrn
Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis.
Zdroje
1. AlterMJ
MargolisHS
KrawczynskiK
JudsonFN
MaresA
1992 The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. N Engl J Med 327 1899 1905
2. IkedaM
KatoN
2007 Modulation of host metabolism as a target of new antivirals. Adv Drug Deliv Rev 59 1277 1289
3. HeY
DuanW
TanSL
2007 Emerging host cell targets for hepatitis C therapy. Drug Discov Today 12 209 217
4. YeJ
2007 Reliance of host cholesterol metabolic pathways for the life cycle of hepatitis C virus. PLoS Pathog 3 e108 doi:10.1371/journal.ppat.0030108
5. NegroF
SanyalAJ
2009 Hepatitis C virus, steatosis and lipid abnormalities: clinical and pathogenic data. Liver Int S2 26 37
6. ShiST
LeeKJ
AizakiH
HwangSB
LaiMM
2003 Hepatitis C virus RNA replication occurs on a detergent-resistant membrane that cofractionates with caveolin 2. J Virol 77 4160 4168
7. KapadiaSB
ChisariFV
2005 Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A 102 2561 2566
8. WangC
GaleMJr
KellerBC
HuangH
BrownMS
2005 Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol Cell 18 425 434
9. SakamotoH
OkamotoK
AokiM
KatoH
KatsumeA
2005 Host sphingolipid biosynthesis as a target for hepatitis C virus therapy. Nat Chem Biol 1 333 337
10. UmeharaT
SudohM
YasuiF
MatsudaC
HayashiY
2006 Serine palmitoyltransferase inhibitor suppresses HCV replication in a mouse model. Biochem Biophys Res Commun 346 67 73
11. MiyanariY
AtsuzawaK
UsudaN
WatashiK
HishikiT
2007 The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9 1089 1097
12. HuangH
SunF
OwenDM
LiW
ChenY
2007 Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low density lipoproteins. Proc Natl Acad Sci U S A 104 5848 5853
13. GastaminzaP
ChengG
WielandS
ZhongJ
LiaoW
2008 Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J Virol 82 2120 2129
14. YaoH
YeJ
2008 Long chain acyl-CoA synthetase 3-mediated phosphatidylcholine synthesis is required for assembly of very low density lipoproteins in human hepatoma Huh7 cells. J Biol Chem 283 849 854
15. NahmiasY
GoldwasserJ
CasaliM
van PollD
WakitaT
2008 Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 47 1437 1445
16. AizakiH
MorikawaK
FukasawaM
HaraH
InoueY
2008 Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J Virol 82 5715 5724
17. WaltersKA
SyderAJ
LedererSL
DiamondDL
PaeperB
2009 Genomic analysis reveals a potential role for cell cycle perturbation in HCV-mediated apoptosis of cultured hepatocytes. PLoS Pathog 5 e1000269 doi:10.1371/journal.ppat.1000269
18. LindenbachBD
EvansMJ
SyderAJ
WölkB
TellinghuisenTL
2005 Complete replication of hepatitis C virus in cell culture. Science 309 623 626
19. QianWJ
MonroeME
LiuT
JacobsJM
AndersonGA
2005 Quantitative Proteome Analysis of Human Plasma following in Vivo Lipopolysaccharide Administration Using 16O/18O Labeling and the Accurate Mass and Time Tag Approach. Mol Cell Proteomics 4 700 709
20. DiamondDL
JacobsJM
PaeperB
ProllSC
GritsenkoMA
2007 Proteomic Profiling of Human Liver Biopsies: Hepatitis C Virus-Induced Fibrosis and Mitochondrial Dysfunction. Hepatology 46 649 657
21. JacobsJM
DiamondDL
ChanEY
GritsenkoMA
QianW
2005 Proteome analysis of liver cells expressing a full-length hepatitis C virus (HCV) replicon and biopsy specimens of posttransplantation liver from HCV-infected patients. J Virol 79 7558 7569
22. ShenY
ZhaoR
BelovME
ConradsTP
AndersonGA
2001 Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics. Anal Chem 73 1766 1775
23. LivesayEA
TangK
TaylorBK
BuschbachMA
HopkinsDF
2008 Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses. Anal Chem 80 294 302
24. DingJ
SorensenCM
ZhangQ
JiangH
JaitlyN
2007 Capillary LC coupled with high-mass measurement accuracy mass spectrometry for metabolic profiling. Anal Chem 79 6081 6093
25. KiebelGR
AuberryKJ
JaitlyN
ClarkDA
MonroeME
2006 PRISM: A data management system for high-throughput proteomics. Proteomics 60 1783 1790
26. JaitlyN
MayampurathA
LittlefieldK
AdkinsJN
AndersonGA
2009 Decon2LS: An open-source software package for automated processing and visualization of high resolution Mass Spectrometry Data. BMC Bioinformatics 10 87
27. MonroeME
TolićN
JaitlyN
ShawJL
AdkinsJN
2007 VIPER: an advanced software package to support high-throughput LC-MS peptide identification. Bioinformatics 23 2021 2023
28. JaitlyN
MonroeME
PetyukVA
ClaussTR
AdkinsJN
2006 Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Anal Chem 78 7397 7409
29. YaoX
FreasA
RamirezJ
DemirevPA
FenselauC
2001 Protelytic 180 Labeling for Comparative Proteomics: Model Studies with Two Serotypes of Adenovirus. Anal Chem 73 2836 2842
30. NesvizhskiiAI
KellerA
KolkerE
AebersoldR
2003 A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry. Anal Chem 75 4646 4658
31. TryggJ
HolmesE
LundstedtT
2007 Chemometrics in metabonomics. J Proteome Res 6 469 79
32. YuH
KimPM
SprecherE
TrifonovV
GersteinM
2007 The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3 e59 doi:10.1371/journal.pcbi.0030059
33. DyerMD
MuraliTM
SobralBW
2008 The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 4 e32 doi:10.1371/journal.ppat.0040032
34. McDermottJE
TaylorRC
YoonH
HeffronF
2009 Bottlenecks and hubs in inferred networks are important for virulence in Salmonella typhimurium. J Comput Biol 16 169 180
35. DiamondDL
ProllSC
JacobsJM
ChanEY
CampDG2nd
2006 HepatoProteomics: applying proteomic technologies to the study of liver function and disease. Hepatology 44 299 308
36. DeBerardinisRJ
LumJJ
HatzivassiliouG
ThompsonCB
2008 The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7 11 20
37. DeBerardinisRJ
MancusoA
DaikhinE
NissimI
YudkoffM
2007 Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104 19345 19350
38. StuyverLJ
McBrayerTR
TharnishPM
HassanAE
ChuCK
2003 Dynamics of subgenomic hepatitis C virus replicon RNA levels in Huh-7 cells after exposure to nucleoside antimetabolites. J Virol 77 10689 10694
39. OwenOE
KalhanSC
HansonRW
2002 The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277 30409 30412
40. YooH
AntoniewiczMR
StephanopoulosG
KelleherJK
2008 Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283 20621 20627
41. TardifKD
MoriK
SiddiquiA
2002 Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J Virol 76 7453 7459
42. PavioN
RomanoPR
GraczykTM
FeinstoneSM
TaylorDR
2003 Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2alpha kinase PERK. J Virol 77 3578 3585
43. MiccheliAT
MiccheliA
Di ClementeR
ValerioM
ColucciaP
2006 NMR-based metabolic profiling of human hepatoma cells in relation to cell growth by culture media analysis. Biochim Biophys Acta 1760 1723 1731
44. LangPA
SchenckM
NicolayJP
BeckerJU
KempeDS
2007 Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13 164 170
45. VoissetC
LavieM
HelleF
Op De BeeckA
BilheuA
2008 Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cell Microbiol 10 606 617
46. de ChasseyB
NavratilV
TafforeauL
HietMS
Aublin-GexA
2008 Hepatitis C virus infection protein network. Mol Syst Biol 4 230
47. MungerJ
BajadSU
CollerHA
ShenkT
RabinowitzJD
2006 Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2 e132 doi:10.1371/journal.ppat.0020132
48. MungerJ
BennettBD
ParikhA
FengXJ
McArdleJ
2008 Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26 1179 1186
49. ChanEY
QianWJ
DiamondDL
LiuT
GritsenkoMA
2007 Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J Virol 81 7571 7583
50. ChanEY
SuttonJN
JacobsJM
BondarenkoA
SmithRD
2009 Dynamic Host Energetics and Cytoskeletal Proteomes in HIV-1-Infected Human Primary CD4 Cells: Analysis by Multiplexed Label-free Mass Spectrometry. J Virol 83 9283 9295
51. RingroseJH
JeeningaRE
BerkhoutB
SpeijerD
2008 Proteomic studies reveal coordinated changes in T-cell expression patterns upon infection with human immunodeficiency virus type 1. J Virol 82 4320 4330
52. van 't WoutAB
SwainJV
SchindlerM
RaoU
PathmajeyanMS
2005 Nef induces multiple genes involved in cholesterol synthesis and uptake in human immunodeficiency virus type 1-infected T cells. J Virol 79 10053 10058
53. PiccoliC
ScrimaR
QuaratoG
D'AprileA
RipoliM
2007 Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress. Hepatology 46 58 65
54. ChenEI
HewelJ
KruegerJS
TirabyC
WeberMR
2007 Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67 1472 1486
55. Abu-ElheigaL
MatzukMM
Abo-HashemaKA
WakilSJ
2001 Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291 2613 2616
56. YuXX
LewinDA
ForrestW
AdamsSH
2002 Cold elicits the simultaneous induction of fatty acid synthesis and beta-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo. FASEB J 16 155 168
57. DullooAG
GublerM
MontaniJP
SeydouxJ
SolinasG
2004 Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity. Int J Obes Relat Metab Disord Suppl 4 S29 837
58. KasaiD
AdachiT
DengL
Nagano-FujiiM
SadaK
2009 HCV replication suppresses cellular glucose uptake through down-regulation of cell surface expression of glucose transporters. J Hepatol 50 883 894
59. GaleMJr
TanSL
KatzeMG
2000 Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev 64 239 280
60. KrützfeldtJ
RajewskyN
BraichR
RajeevKG
TuschlT
2005 Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438 685 689
61. EsauC
DavisS
MurraySF
YuXX
PandeySK
2006 miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3 87 98
62. JoplingCL
YiM
LancasterAM
LemonSM
SarnowP
2005 Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309 1577 1581
63. SchwanhäusserB
GossenM
DittmarG
SelbachM
2009 Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9 205 209
64. BrüggerB
GlassB
HaberkantP
LeibrechtI
WielandFT
2006 The HIV lipidome: A raft with an unusual composition. Proc Natl Acad Sci U S A 103 2641 2646
65. CallahanMK
PopernackPM
TsutsuiS
TruongL
SchlegelRA
2003 Phosphatidylserine on HIV Envelope Is a Cofactor for Infection of Monocytic Cells. J Immunol 170 4840 4845
66. KapadiaSB
ChisariFV
2005 Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A 102 2561 2566
67. TakahashiM
WatariE
ShinyaE
ShimizuT
TakahashiH
2007 Suppression of virus replication via down-modulation of mitochondrial short chain enoyl-CoA hydratase in human glioblastoma cells. Antiviral Res 75 152 158
68. PengX
ChanEY
LiY
DiamondDL
KorthMJ
2009 Virus-host interactions: from systems biology to translational research. Curr Opin Microbiol 12 432 438
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 1
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Panton-Valentine Leukocidin Is a Very Potent Cytotoxic Factor for Human Neutrophils
- CD8+ T Cell Control of HIV—A Known Unknown
- Polyoma Virus-Induced Osteosarcomas in Inbred Strains of Mice: Host Determinants of Metastasis
- The Deadly Chytrid Fungus: A Story of an Emerging Pathogen