#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2


The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galβ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galβ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms.


Vyšlo v časopise: N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2. PLoS Pathog 6(1): e32767. doi:10.1371/journal.ppat.1000717
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000717

Souhrn

The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galβ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galβ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms.


Zdroje

1. PeumansWJ

Van DammeEJ

1995 Lectins as plant defense proteins. Plant Physiol 109 347 352

2. LorisR

2002 Principles of structures of animal and plant lectins. Biochim Biophys Acta 1572 198 208

3. CashHL

WhithamCV

BehrendtCL

HooperLV

2006 Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313 1126 1130

4. KohatsuL

HsuDK

JegalianAG

LiuFT

BaumLG

2006 Galectin-3 induces death of Candida species expressing specific β1,2-linked mannans. J Immunol 177 4718 4726

5. GriffittsJS

HaslamSM

YangT

GarczynskiSF

MulloyB

2005 Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307 922 925

6. RappuoliR

MontecuccoC

1997 Guidebook to Protein Toxins and Their Use in Cell Biology. Oxford Oxford University Press

7. GoldsteinIJ

WinterHC

2007 Mushroom Lectins.

KamerlingJP

Comprehensive Glycoscience: From Chemistry to Systems biology Amsterdam Elsevier Ltd

8. GuillotJ

KonskaG

1997 Lectins in Higher Fungi. Biochem Syst Ecol 25 203 230

9. FumioY

SakaiT

ShiraishiN

YotsumotoM

MukoyoshiR

2000 Hemagglutinins (lectins) in fruit bodies of Japanese higher fungi. Mycoscience 41 323 330

10. WangH

NgTB

OoiVE

1998 Lectins from mushrooms. Mycol Res 102 897 906

11. WaltiMA

VillalbaC

BuserRM

GrunlerA

AebiM

2006 Targeted gene silencing in the model mushroom Coprinopsis cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs. Eukaryot Cell 5 732 744

12. NowrousianM

CebulaP

2005 The gene for a lectin-like protein is transcriptionally activated during sexual development, but is not essential for fruiting body formation in the filamentous fungus Sordaria macrospora. BMC Microbiol 5 64 74

13. TriguerosV

LougarreA

Ali-AhmedD

RahbeY

GuillotJ

2003 Xerocomus chrysenteron lectin: identification of a new pesticidal protein. Biochim Biophys Acta 1621 292 298

14. SunH

ZhaoCG

TongX

QiYP

2003 A Lectin with Mycelia Differentiation and Antiphytovirus Activities from the Edible Mushroom Agrocybe Aegerita. J Biochem Mol Biol 36 214 222

15. YangN

LiDF

FengL

XiangY

LiuW

2009 Structural basis for the tumor cell apoptosis-inducing activity of an antitumor lectin from the edible mushroom Agrocybe aegerita. J Mol Biol 387 694 705

16. WarnerRL

WinterHC

SpeyerCL

VaraniJ

OldsteinIJ

2004 Marasmius oreades lectin induces renal thrombotic microangiopathic lesions. Exp Mol Pathol 77 77 84

17. HarperSM

CrenshawRW

MullinsMA

PrivalleLS

1995 Lectin binding to insect brush border membranes. J Econ Entomol 88 1197 1202

18. PohlevenJ

ObermajerN

SaboticJ

AnzlovarS

SepcicK

2008 Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta 1790 173 181

19. FunkPE

ThompsonCB

1998 Identification of a lectin that induces cell death in developing chicken B cells. Cell Immunol 186 75 81

20. OkadaH

KadotaI

2003 Host status of 10 fungal isolates for two nematode species, Filenchus misellus and Aphelenchus avenae. Soil Biology & Biochemistry 35 1601 1607

21. SmithJE

ChallenMP

WhitePF

EdmondsonRN

ChandlerD

2006 Differential effect of Agaricus host species on the population development of Megaselia halterata (Diptera: Phoridae). Bull Entomol Res 96 565 571

22. O'ConnorL

KeilCB

2005 Mushroom host influence on Lycoriella mali (Diptera: Sciaridae) life cycle. J Econ Entomol 98 342 349

23. WalkerGE

1984 Ecology of the mycophagous nematode Aphelenchus avenae in wheat-field and pine-forest soils. Plant and Soil 78 417 428

24. YeatesGW

BongersT

De GoedeRG

FreckmanDW

GeorgievaSS

1993 Feeding habits in soil nematode families and genera-an outline for soil ecologists. J Nematol 25 315 331

25. CooperDN

BoulianneRP

CharltonS

FarrellEM

SucherA

1997 Fungal galectins, sequence and specificity of two isolectins from Coprinus cinereus. J Biol Chem 272 1514 1521

26. BoulianneRP

LiuY

AebiM

LuBC

KuesU

2000 Fruiting body development in Coprinus cinereus: regulated expression of two galectins secreted by a non-classical pathway. Microbiology 146 (Pt8) 1841 1853

27. WaltiMA

WalserPJ

ThoreS

GrunlerA

BednarM

2008 Structural basis for chitotetraose coordination by CGL3, a novel galectin-related protein from Coprinopsis cinerea. J Mol Biol 379 146 159

28. WalserPJ

HaebelPW

KunzlerM

SargentD

KuesU

2004 Structure and functional analysis of the fungal galectin CGL2. Structure 12 689 702

29. MarroquinLD

ElyassniaD

GriffittsJS

FeitelsonJS

AroianRV

2000 Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155 1693 1699

30. de MaagdRA

BravoA

CrickmoreN

2001 How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17 193 199

31. BarrowsBD

GriffittsJS

AroianRV

2007 Resistance is non-futile: resistance to Cry5B in the nematode Caenorhabditis elegans. J Invertebr Pathol 95 198 200

32. KimDH

FeinbaumR

AlloingG

EmersonFE

GarsinDA

2002 A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297 623 626

33. HuffmanDL

AbramiL

SasikR

CorbeilJ

van der GootFG

2004 Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci U S A 101 10995 11000

34. RhombergS

FuchslugerC

RendicD

PaschingerK

JantschV

2006 Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS J 273 2244 2256

35. PaschingerK

StaudacherE

StemmerU

FabiniG

WilsonIB

2005 Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiology 15 463 474

36. ChenS

SpenceAM

SchachterH

2003 Isolation of null alleles of the Caenorhabditis elegans gly-12, gly-13 and gly-14 genes, all of which encode UDP-GlcNAc: α-3-D-mannoside β1,2-N-acetylglucosaminyltransferase I activity. Biochimie 85 391 401

37. PaschingerK

GutterniggM

RendicD

WilsonIB

2008 The N-glycosylation pattern of Caenorhabditis elegans. Carbohydr Res 343 2041 2049

38. PaschingerK

RendicD

LochnitG

JantschV

WilsonIB

2004 Molecular basis of anti-horseradish peroxidase staining in Caenorhabditis elegans. J Biol Chem 279 49588 49598

39. ShiH

TanJ

SchachterH

2006 N-glycans are involved in the response of Caenorhabditis elegans to bacterial pathogens. Methods Enzymol 417 359 389

40. HannemanAJ

RosaJC

AshlineD

ReinholdVN

2006 Isomer and glycomer complexities of core GlcNAcs in Caenorhabditis elegans. Glycobiology 16 874 890

41. Marchler-BauerA

AndersonJB

ChitsazF

DerbyshireMK

DeWeese-ScottC

2009 CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37 D205 210

42. TitzA

ButschiA

HenrissatB

FanYY

HennetT

2009 Molecular basis for galactosylation of core fucose residues in invertebrates: Identification of Caenorhabditis elegans N-glycan core α1,6-fucoside-β1,4-galactosyltransferase GALT-1 as a member of a novel glycosyltransferase family. J Biol Chem: in press

43. VastaGR

2009 Roles of galectins in infection. Nat Rev Microbiol 7 424 438

44. RabinovichGA

ToscanoMA

2009 Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9 338 352

45. AhmedH

DuSJ

VastaGR

2009 Knockdown of a galectin-1-like protein in zebrafish (Danio rerio) causes defects in skeletal muscle development. Glycoconj J 26 277 283

46. GeorgiadisV

StewartHJ

PollardHJ

TavsanogluY

PrasadR

2007 Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration. Dev Dyn 236 1014 1024

47. WalserPJ

KuesU

AebiM

KunzlerM

2005 Ligand interactions of the Coprinopsis cinerea galectins. Fungal Genet Biol 42 293 305

48. LiangY

FengL

TongX

WangK

LiDF

2009 Importance of nuclear localization for the apoptosis-induced activity of a fungal galectin AAL (Agrocybe aegerita lectin). Biochem Biophys Res Commun 386 437 442

49. Van DammeEJ

BarreA

RougeP

PeumansWJ

2004 Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9 484 489

50. WangM

TriguerosV

PaquereauL

ChavantL

FournierD

2002 Proteins as active compounds involved in insecticidal activity of mushroom fruitbodies. J Econ Entomol 95 603 607

51. FoxEM

HowlettBJ

2008 Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11 481 487

52. SpitellerP

2008 Chemical defence strategies of higher fungi. Chemistry 14 9100 9110

53. ZhangY

IwasaT

TsudaM

KobataA

TakasakiS

1997 A novel monoantennary complex-type sugar chain found in octopus rhodopsin: occurrence of the Galβ1,4Fuc group linked to the proximal N-acetylglucosamine residue of the trimannosyl core. Glycobiology 7 1153 1158

54. TakahashiN

MasudaK

HirakiK

YoshiharaK

HuangHH

2003 N-Glycan structures of squid rhodopsin. Eur J Biochem 270 2627 2632

55. WuhrerM

RobijnML

KoelemanCA

BalogCI

GeyerR

2004 A novel Gal(β1-4)Gal(β1-4)Fuc(α1-6)-core modification attached to the proximal N-acetylglucosamine of keyhole limpet haemocyanin (KLH) N-glycans. Biochem J 378 625 632

56. ChenS

ZhouS

SarkarM

SpenceAM

SchachterH

1999 Expression of three Caenorhabditis elegans N-acetylglucosaminyltransferase I genes during development. J Biol Chem 274 288 297

57. JuT

ZhengQ

CummingsRD

2006 Identification of core 1 O-glycan T-synthase from Caenorhabditis elegans. Glycobiology 16 947 958

58. GriffittsJS

WhitacreJL

StevensDE

AroianRV

2001 Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293 860 864

59. BarrowsBD

HaslamSM

BischofLJ

MorrisHR

DellA

2007 Resistance to Bacillus thuringiensis toxin in Caenorhabditis elegans from loss of fucose. J Biol Chem 282 3302 3311

60. TakeuchiT

HayamaK

HirabayashiJ

KasaiK

2008 Caenorhabditis elegans N-glycans containing a Gal-Fuc disaccharide unit linked to the innermost GlcNAc residue are recognized by C. elegans galectin LEC-6. Glycobiology 18 882 890

61. SonnichsenB

KoskiLB

WalshA

MarschallP

NeumannB

2005 Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434 462 469

62. WongD

BazopoulouD

PujolN

TavernarakisN

EwbankJJ

2007 Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol 8 R194

63. WilsonIB

HarthillJE

MullinNP

AshfordDA

AltmannF

1998 Core α1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology 8 651 661

64. KajiH

KamiieJ

KawakamiH

KidoK

YamauchiY

2007 Proteomics reveals N-linked glycoprotein diversity in Caenorhabditis elegans and suggests an atypical translocation mechanism for integral membrane proteins. Mol Cell Proteomics 6 2100 2109

65. GarsinDA

SifriCD

MylonakisE

QinX

SinghKV

2001 A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98 10892 10897

66. KotheM

AntlM

HuberB

StoeckerK

EbrechtD

2003 Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol 5 343 351

67. GatehouseAM

GatehouseJA

BharathiM

SpenceJ

PowellKS

1998 Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J Insect Physiol 44 529 539

68. ChenSJ

ChenNT

WangSH

HsuJC

DingWH

2009 Insecticidal action of mammalian galectin-1 against diamondback moth (Plutella xylostella). Pest Manag Sci 65 923 930

69. HernandezJD

NguyenJT

HeJ

WangW

ArdmanB

2006 Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J Immunol 177 5328 5336

70. BiS

EarlLA

JacobsL

BaumLG

2008 Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways. J Biol Chem 283 12248 12258

71. StowellSR

KarmakarS

ArthurCM

JuT

RodriguesLC

2009 Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell 20 1408 1418

72. PatnaikSK

PotvinB

CarlssonS

SturmD

LefflerH

2006 Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology 16 305 317

73. StillmanBN

HsuDK

PangM

BrewerCF

JohnsonP

2006 Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 176 778 789

74. StowellSR

ArthurCM

MehtaP

SlaninaKA

BlixtO

2008 Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283 10109 10123

75. SambrookJ

RussellDW

2001 Molecular Cloning: A Laboratory Manual. New York Cold Spring Harbor Laboratory Press 999 p.

76. Stiernagle T (February 11, 2006) Maintenance of C. elegans. In: The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.101.1, http://www.wormbook.org

77. BarrowsBD

GriffittsJS

AroianRV

2006 Caenorhabditis elegans carbohydrates in bacterial toxin resistance. Methods Enzymol 417 340 358

78. SulstonJ

HodgkinJ

1988 Methods.

WoodWB

The nematode Caenorhabditis elegans New York Cold Spring Harbor Laboratory Press 587 606

79. BoulinT

BessereauJL

2007 Mos1-mediated insertional mutagenesis in Caenorhabditis elegans. Nat Protoc 2 1276 1287

80. HallDH

1995 Electron microscopy and three-dimensional image reconstruction. Methods Cell Biol 48 395 436

81. PoltlG

KernerD

PaschingerK

WilsonIB

2007 N-glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. Febs J 274 714 726

82. StrohalmM

HassmanM

KosataB

KodicekM

2008 mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom 22 905 908

83. GutterniggM

Kretschmer-LubichD

PaschingerK

RendicD

HaderJ

2007 Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants, and insects. J Biol Chem 282 27825 27840

84. KabschW

1993 Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 26 795 800

85. CollaborativeComputationalProject, No.4 1994 The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr D50 760 763

86. AdamsPD

Grosse-KunstleveRW

HungLW

IoergerTR

McCoyAJ

2002 PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58 1948 1954

87. EmsleyP

CowtanK

2004 Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60 2126 2132

88. DeLanoWL

2008 The PyMOL Molecular Graphics System. Palo Alto, CA, USA DeLano Scientific LLC

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#