N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2
The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galβ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galβ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms.
Vyšlo v časopise:
N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2. PLoS Pathog 6(1): e32767. doi:10.1371/journal.ppat.1000717
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000717
Souhrn
The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galβ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galβ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms.
Zdroje
1. PeumansWJ
Van DammeEJ
1995 Lectins as plant defense proteins. Plant Physiol 109 347 352
2. LorisR
2002 Principles of structures of animal and plant lectins. Biochim Biophys Acta 1572 198 208
3. CashHL
WhithamCV
BehrendtCL
HooperLV
2006 Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313 1126 1130
4. KohatsuL
HsuDK
JegalianAG
LiuFT
BaumLG
2006 Galectin-3 induces death of Candida species expressing specific β1,2-linked mannans. J Immunol 177 4718 4726
5. GriffittsJS
HaslamSM
YangT
GarczynskiSF
MulloyB
2005 Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307 922 925
6. RappuoliR
MontecuccoC
1997 Guidebook to Protein Toxins and Their Use in Cell Biology. Oxford Oxford University Press
7. GoldsteinIJ
WinterHC
2007 Mushroom Lectins.
KamerlingJP
Comprehensive Glycoscience: From Chemistry to Systems biology Amsterdam Elsevier Ltd
8. GuillotJ
KonskaG
1997 Lectins in Higher Fungi. Biochem Syst Ecol 25 203 230
9. FumioY
SakaiT
ShiraishiN
YotsumotoM
MukoyoshiR
2000 Hemagglutinins (lectins) in fruit bodies of Japanese higher fungi. Mycoscience 41 323 330
10. WangH
NgTB
OoiVE
1998 Lectins from mushrooms. Mycol Res 102 897 906
11. WaltiMA
VillalbaC
BuserRM
GrunlerA
AebiM
2006 Targeted gene silencing in the model mushroom Coprinopsis cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs. Eukaryot Cell 5 732 744
12. NowrousianM
CebulaP
2005 The gene for a lectin-like protein is transcriptionally activated during sexual development, but is not essential for fruiting body formation in the filamentous fungus Sordaria macrospora. BMC Microbiol 5 64 74
13. TriguerosV
LougarreA
Ali-AhmedD
RahbeY
GuillotJ
2003 Xerocomus chrysenteron lectin: identification of a new pesticidal protein. Biochim Biophys Acta 1621 292 298
14. SunH
ZhaoCG
TongX
QiYP
2003 A Lectin with Mycelia Differentiation and Antiphytovirus Activities from the Edible Mushroom Agrocybe Aegerita. J Biochem Mol Biol 36 214 222
15. YangN
LiDF
FengL
XiangY
LiuW
2009 Structural basis for the tumor cell apoptosis-inducing activity of an antitumor lectin from the edible mushroom Agrocybe aegerita. J Mol Biol 387 694 705
16. WarnerRL
WinterHC
SpeyerCL
VaraniJ
OldsteinIJ
2004 Marasmius oreades lectin induces renal thrombotic microangiopathic lesions. Exp Mol Pathol 77 77 84
17. HarperSM
CrenshawRW
MullinsMA
PrivalleLS
1995 Lectin binding to insect brush border membranes. J Econ Entomol 88 1197 1202
18. PohlevenJ
ObermajerN
SaboticJ
AnzlovarS
SepcicK
2008 Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta 1790 173 181
19. FunkPE
ThompsonCB
1998 Identification of a lectin that induces cell death in developing chicken B cells. Cell Immunol 186 75 81
20. OkadaH
KadotaI
2003 Host status of 10 fungal isolates for two nematode species, Filenchus misellus and Aphelenchus avenae. Soil Biology & Biochemistry 35 1601 1607
21. SmithJE
ChallenMP
WhitePF
EdmondsonRN
ChandlerD
2006 Differential effect of Agaricus host species on the population development of Megaselia halterata (Diptera: Phoridae). Bull Entomol Res 96 565 571
22. O'ConnorL
KeilCB
2005 Mushroom host influence on Lycoriella mali (Diptera: Sciaridae) life cycle. J Econ Entomol 98 342 349
23. WalkerGE
1984 Ecology of the mycophagous nematode Aphelenchus avenae in wheat-field and pine-forest soils. Plant and Soil 78 417 428
24. YeatesGW
BongersT
De GoedeRG
FreckmanDW
GeorgievaSS
1993 Feeding habits in soil nematode families and genera-an outline for soil ecologists. J Nematol 25 315 331
25. CooperDN
BoulianneRP
CharltonS
FarrellEM
SucherA
1997 Fungal galectins, sequence and specificity of two isolectins from Coprinus cinereus. J Biol Chem 272 1514 1521
26. BoulianneRP
LiuY
AebiM
LuBC
KuesU
2000 Fruiting body development in Coprinus cinereus: regulated expression of two galectins secreted by a non-classical pathway. Microbiology 146 (Pt8) 1841 1853
27. WaltiMA
WalserPJ
ThoreS
GrunlerA
BednarM
2008 Structural basis for chitotetraose coordination by CGL3, a novel galectin-related protein from Coprinopsis cinerea. J Mol Biol 379 146 159
28. WalserPJ
HaebelPW
KunzlerM
SargentD
KuesU
2004 Structure and functional analysis of the fungal galectin CGL2. Structure 12 689 702
29. MarroquinLD
ElyassniaD
GriffittsJS
FeitelsonJS
AroianRV
2000 Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155 1693 1699
30. de MaagdRA
BravoA
CrickmoreN
2001 How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17 193 199
31. BarrowsBD
GriffittsJS
AroianRV
2007 Resistance is non-futile: resistance to Cry5B in the nematode Caenorhabditis elegans. J Invertebr Pathol 95 198 200
32. KimDH
FeinbaumR
AlloingG
EmersonFE
GarsinDA
2002 A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297 623 626
33. HuffmanDL
AbramiL
SasikR
CorbeilJ
van der GootFG
2004 Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci U S A 101 10995 11000
34. RhombergS
FuchslugerC
RendicD
PaschingerK
JantschV
2006 Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS J 273 2244 2256
35. PaschingerK
StaudacherE
StemmerU
FabiniG
WilsonIB
2005 Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiology 15 463 474
36. ChenS
SpenceAM
SchachterH
2003 Isolation of null alleles of the Caenorhabditis elegans gly-12, gly-13 and gly-14 genes, all of which encode UDP-GlcNAc: α-3-D-mannoside β1,2-N-acetylglucosaminyltransferase I activity. Biochimie 85 391 401
37. PaschingerK
GutterniggM
RendicD
WilsonIB
2008 The N-glycosylation pattern of Caenorhabditis elegans. Carbohydr Res 343 2041 2049
38. PaschingerK
RendicD
LochnitG
JantschV
WilsonIB
2004 Molecular basis of anti-horseradish peroxidase staining in Caenorhabditis elegans. J Biol Chem 279 49588 49598
39. ShiH
TanJ
SchachterH
2006 N-glycans are involved in the response of Caenorhabditis elegans to bacterial pathogens. Methods Enzymol 417 359 389
40. HannemanAJ
RosaJC
AshlineD
ReinholdVN
2006 Isomer and glycomer complexities of core GlcNAcs in Caenorhabditis elegans. Glycobiology 16 874 890
41. Marchler-BauerA
AndersonJB
ChitsazF
DerbyshireMK
DeWeese-ScottC
2009 CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37 D205 210
42. TitzA
ButschiA
HenrissatB
FanYY
HennetT
2009 Molecular basis for galactosylation of core fucose residues in invertebrates: Identification of Caenorhabditis elegans N-glycan core α1,6-fucoside-β1,4-galactosyltransferase GALT-1 as a member of a novel glycosyltransferase family. J Biol Chem: in press
43. VastaGR
2009 Roles of galectins in infection. Nat Rev Microbiol 7 424 438
44. RabinovichGA
ToscanoMA
2009 Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9 338 352
45. AhmedH
DuSJ
VastaGR
2009 Knockdown of a galectin-1-like protein in zebrafish (Danio rerio) causes defects in skeletal muscle development. Glycoconj J 26 277 283
46. GeorgiadisV
StewartHJ
PollardHJ
TavsanogluY
PrasadR
2007 Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration. Dev Dyn 236 1014 1024
47. WalserPJ
KuesU
AebiM
KunzlerM
2005 Ligand interactions of the Coprinopsis cinerea galectins. Fungal Genet Biol 42 293 305
48. LiangY
FengL
TongX
WangK
LiDF
2009 Importance of nuclear localization for the apoptosis-induced activity of a fungal galectin AAL (Agrocybe aegerita lectin). Biochem Biophys Res Commun 386 437 442
49. Van DammeEJ
BarreA
RougeP
PeumansWJ
2004 Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9 484 489
50. WangM
TriguerosV
PaquereauL
ChavantL
FournierD
2002 Proteins as active compounds involved in insecticidal activity of mushroom fruitbodies. J Econ Entomol 95 603 607
51. FoxEM
HowlettBJ
2008 Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11 481 487
52. SpitellerP
2008 Chemical defence strategies of higher fungi. Chemistry 14 9100 9110
53. ZhangY
IwasaT
TsudaM
KobataA
TakasakiS
1997 A novel monoantennary complex-type sugar chain found in octopus rhodopsin: occurrence of the Galβ1,4Fuc group linked to the proximal N-acetylglucosamine residue of the trimannosyl core. Glycobiology 7 1153 1158
54. TakahashiN
MasudaK
HirakiK
YoshiharaK
HuangHH
2003 N-Glycan structures of squid rhodopsin. Eur J Biochem 270 2627 2632
55. WuhrerM
RobijnML
KoelemanCA
BalogCI
GeyerR
2004 A novel Gal(β1-4)Gal(β1-4)Fuc(α1-6)-core modification attached to the proximal N-acetylglucosamine of keyhole limpet haemocyanin (KLH) N-glycans. Biochem J 378 625 632
56. ChenS
ZhouS
SarkarM
SpenceAM
SchachterH
1999 Expression of three Caenorhabditis elegans N-acetylglucosaminyltransferase I genes during development. J Biol Chem 274 288 297
57. JuT
ZhengQ
CummingsRD
2006 Identification of core 1 O-glycan T-synthase from Caenorhabditis elegans. Glycobiology 16 947 958
58. GriffittsJS
WhitacreJL
StevensDE
AroianRV
2001 Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293 860 864
59. BarrowsBD
HaslamSM
BischofLJ
MorrisHR
DellA
2007 Resistance to Bacillus thuringiensis toxin in Caenorhabditis elegans from loss of fucose. J Biol Chem 282 3302 3311
60. TakeuchiT
HayamaK
HirabayashiJ
KasaiK
2008 Caenorhabditis elegans N-glycans containing a Gal-Fuc disaccharide unit linked to the innermost GlcNAc residue are recognized by C. elegans galectin LEC-6. Glycobiology 18 882 890
61. SonnichsenB
KoskiLB
WalshA
MarschallP
NeumannB
2005 Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434 462 469
62. WongD
BazopoulouD
PujolN
TavernarakisN
EwbankJJ
2007 Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol 8 R194
63. WilsonIB
HarthillJE
MullinNP
AshfordDA
AltmannF
1998 Core α1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology 8 651 661
64. KajiH
KamiieJ
KawakamiH
KidoK
YamauchiY
2007 Proteomics reveals N-linked glycoprotein diversity in Caenorhabditis elegans and suggests an atypical translocation mechanism for integral membrane proteins. Mol Cell Proteomics 6 2100 2109
65. GarsinDA
SifriCD
MylonakisE
QinX
SinghKV
2001 A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98 10892 10897
66. KotheM
AntlM
HuberB
StoeckerK
EbrechtD
2003 Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol 5 343 351
67. GatehouseAM
GatehouseJA
BharathiM
SpenceJ
PowellKS
1998 Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J Insect Physiol 44 529 539
68. ChenSJ
ChenNT
WangSH
HsuJC
DingWH
2009 Insecticidal action of mammalian galectin-1 against diamondback moth (Plutella xylostella). Pest Manag Sci 65 923 930
69. HernandezJD
NguyenJT
HeJ
WangW
ArdmanB
2006 Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J Immunol 177 5328 5336
70. BiS
EarlLA
JacobsL
BaumLG
2008 Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways. J Biol Chem 283 12248 12258
71. StowellSR
KarmakarS
ArthurCM
JuT
RodriguesLC
2009 Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell 20 1408 1418
72. PatnaikSK
PotvinB
CarlssonS
SturmD
LefflerH
2006 Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology 16 305 317
73. StillmanBN
HsuDK
PangM
BrewerCF
JohnsonP
2006 Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 176 778 789
74. StowellSR
ArthurCM
MehtaP
SlaninaKA
BlixtO
2008 Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283 10109 10123
75. SambrookJ
RussellDW
2001 Molecular Cloning: A Laboratory Manual. New York Cold Spring Harbor Laboratory Press 999 p.
76. Stiernagle T (February 11, 2006) Maintenance of C. elegans. In: The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.101.1, http://www.wormbook.org
77. BarrowsBD
GriffittsJS
AroianRV
2006 Caenorhabditis elegans carbohydrates in bacterial toxin resistance. Methods Enzymol 417 340 358
78. SulstonJ
HodgkinJ
1988 Methods.
WoodWB
The nematode Caenorhabditis elegans New York Cold Spring Harbor Laboratory Press 587 606
79. BoulinT
BessereauJL
2007 Mos1-mediated insertional mutagenesis in Caenorhabditis elegans. Nat Protoc 2 1276 1287
80. HallDH
1995 Electron microscopy and three-dimensional image reconstruction. Methods Cell Biol 48 395 436
81. PoltlG
KernerD
PaschingerK
WilsonIB
2007 N-glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. Febs J 274 714 726
82. StrohalmM
HassmanM
KosataB
KodicekM
2008 mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom 22 905 908
83. GutterniggM
Kretschmer-LubichD
PaschingerK
RendicD
HaderJ
2007 Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants, and insects. J Biol Chem 282 27825 27840
84. KabschW
1993 Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 26 795 800
85. CollaborativeComputationalProject, No.4 1994 The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr D50 760 763
86. AdamsPD
Grosse-KunstleveRW
HungLW
IoergerTR
McCoyAJ
2002 PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58 1948 1954
87. EmsleyP
CowtanK
2004 Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60 2126 2132
88. DeLanoWL
2008 The PyMOL Molecular Graphics System. Palo Alto, CA, USA DeLano Scientific LLC
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 1
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Panton-Valentine Leukocidin Is a Very Potent Cytotoxic Factor for Human Neutrophils
- CD8+ T Cell Control of HIV—A Known Unknown
- Polyoma Virus-Induced Osteosarcomas in Inbred Strains of Mice: Host Determinants of Metastasis
- The Deadly Chytrid Fungus: A Story of an Emerging Pathogen