#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Structure of the HCMV UL16-MICB Complex Elucidates Select Binding of a Viral Immunoevasin to Diverse NKG2D Ligands


The activating immunoreceptor NKG2D promotes elimination of infected or malignant cells by cytotoxic lymphocytes through engagement of stress-induced MHC class I-related ligands. The human cytomegalovirus (HCMV)-encoded immunoevasin UL16 subverts NKG2D-mediated immune responses by retaining a select group of diverse NKG2D ligands inside the cell. We report here the crystal structure of UL16 in complex with the NKG2D ligand MICB at 1.8 Å resolution, revealing the molecular basis for the promiscuous, but highly selective, binding of UL16 to unrelated NKG2D ligands. The immunoglobulin-like UL16 protein utilizes a three-stranded β-sheet to engage the α-helical surface of the MHC class I-like MICB platform domain. Intriguingly, residues at the center of this β-sheet mimic a central binding motif employed by the structurally unrelated C-type lectin-like NKG2D to facilitate engagement of diverse NKG2D ligands. Using surface plasmon resonance, we find that UL16 binds MICB, ULBP1, and ULBP2 with similar affinities that lie in the nanomolar range (12–66 nM). The ability of UL16 to bind its ligands depends critically on the presence of a glutamine (MICB) or closely related glutamate (ULBP1 and ULBP2) at position 169. An arginine residue at this position however, as found for example in MICA or ULBP3, would cause steric clashes with UL16 residues. The inability of UL16 to bind MICA and ULBP3 can therefore be attributed to single substitutions at key NKG2D ligand locations. This indicates that selective pressure exerted by viral immunoevasins such as UL16 contributed to the diversification of NKG2D ligands.


Vyšlo v časopise: Structure of the HCMV UL16-MICB Complex Elucidates Select Binding of a Viral Immunoevasin to Diverse NKG2D Ligands. PLoS Pathog 6(1): e32767. doi:10.1371/journal.ppat.1000723
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000723

Souhrn

The activating immunoreceptor NKG2D promotes elimination of infected or malignant cells by cytotoxic lymphocytes through engagement of stress-induced MHC class I-related ligands. The human cytomegalovirus (HCMV)-encoded immunoevasin UL16 subverts NKG2D-mediated immune responses by retaining a select group of diverse NKG2D ligands inside the cell. We report here the crystal structure of UL16 in complex with the NKG2D ligand MICB at 1.8 Å resolution, revealing the molecular basis for the promiscuous, but highly selective, binding of UL16 to unrelated NKG2D ligands. The immunoglobulin-like UL16 protein utilizes a three-stranded β-sheet to engage the α-helical surface of the MHC class I-like MICB platform domain. Intriguingly, residues at the center of this β-sheet mimic a central binding motif employed by the structurally unrelated C-type lectin-like NKG2D to facilitate engagement of diverse NKG2D ligands. Using surface plasmon resonance, we find that UL16 binds MICB, ULBP1, and ULBP2 with similar affinities that lie in the nanomolar range (12–66 nM). The ability of UL16 to bind its ligands depends critically on the presence of a glutamine (MICB) or closely related glutamate (ULBP1 and ULBP2) at position 169. An arginine residue at this position however, as found for example in MICA or ULBP3, would cause steric clashes with UL16 residues. The inability of UL16 to bind MICA and ULBP3 can therefore be attributed to single substitutions at key NKG2D ligand locations. This indicates that selective pressure exerted by viral immunoevasins such as UL16 contributed to the diversification of NKG2D ligands.


Zdroje

1. ReddehaseMJ

2002 Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2 831 844

2. LanierLL

2008 Evolutionary struggles between NK cells and viruses. Nat Rev Immunol 8 259 268

3. LodoenMB

LanierLL

2006 Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 18 391 398

4. BironCA

ByronKS

SullivanJL

1989 Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320 1731 1735

5. JonjicS

BabicM

PolicB

KrmpoticA

2008 Immune evasion of natural killer cells by viruses. Curr Opin Immunol 20 30 38

6. PowersC

DeFilippisV

MalouliD

FruhK

2008 Cytomegalovirus immune evasion. Curr Top Microbiol Immunol 325 333 359

7. WilkinsonGW

TomasecP

StantonRJ

ArmstrongM

Prod'hommeV

2008 Modulation of natural killer cells by human cytomegalovirus. J Clin Virol 41 206 212

8. LodoenMB

LanierLL

2005 Viral modulation of NK cell immunity. Nat Rev Microbiol 3 59 69

9. LjunggrenHG

KarreK

1990 In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11 237 244

10. DengL

MariuzzaRA

2006 Structural basis for recognition of MHC and MHC-like ligands by natural killer cell receptors. Semin Immunol 18 159 166

11. LanierLL

2008 Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9 495 502

12. VivierE

TomaselloE

BaratinM

WalzerT

UgoliniS

2008 Functions of natural killer cells. Nat Immunol 9 503 510

13. GonzalezS

GrohV

SpiesT

2006 Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol 298 121 138

14. RauletDH

2003 Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3 781 790

15. BauerS

GrohV

WuJ

SteinleA

PhillipsJH

1999 Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285 727 729

16. WuJ

SongY

BakkerAB

BauerS

SpiesT

1999 An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285 730 732

17. EagleRA

TrowsdaleJ

2007 Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7 737 744

18. CosmanD

MullbergJ

SutherlandCL

ChinW

ArmitageR

2001 ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14 123 133

19. EagleRA

TraherneJA

HairJR

JafferjiI

TrowsdaleJ

2009 ULBP6/RAET1L is an additional human NKG2D ligand. Eur J Immunol

20. DunnC

ChalupnyNJ

SutherlandCL

DoschS

SivakumarPV

2003 Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med 197 1427 1439

21. WelteSA

SinzgerC

LutzSZ

Singh-JasujaH

SampaioKL

2003 Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol 33 194 203

22. ChalupnyNJ

Rein-WestonA

DoschS

CosmanD

2006 Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem Biophys Res Commun 346 175 181

23. JonjicS

PolicB

KrmpoticA

2008 Viral inhibitors of NKG2D ligands: friends or foes of immune surveillance? Eur J Immunol 38 2952 2956

24. Stern-GinossarN

ElefantN

ZimmermannA

WolfDG

SalehN

2007 Host immune system gene targeting by a viral miRNA. Science 317 376 381

25. HolmesMA

LiP

PetersdorfEW

StrongRK

2002 Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D. J Immunol 169 1395 1400

26. LiP

MorrisDL

WillcoxBE

SteinleA

SpiesT

2001 Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat Immunol 2 443 451

27. LiP

WillieST

BauerS

MorrisDL

SpiesT

1999 Crystal structure of the MHC class I homolog MIC-A, a gammadelta T cell ligand. Immunity 10 577 584

28. RadaevS

RostroB

BrooksAG

ColonnaM

SunPD

2001 Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15 1039 1049

29. SpreuJ

StehleT

SteinleA

2006 Human cytomegalovirus-encoded UL16 discriminates MIC molecules by their alpha2 domains. J Immunol 177 3143 3149

30. ChalupnyNJ

SutherlandCL

LawrenceWA

Rein-WestonA

CosmanD

2003 ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun 305 129 135

31. WittenbrinkM

SpreuJ

SteinleA

2009 Differential NKG2D binding to highly related human NKG2D ligands ULBP2 and RAET1G is determined by a single amino acid in the alpha2 domain. Eur J Immunol

32. RobinsonJ

WallerMJ

FailSC

McWilliamH

LopezR

2009 The IMGT/HLA database. Nucleic Acids Res 37 D1013 1017

33. KayeJ

BrowneH

StoffelM

MinsonT

1992 The UL16 gene of human cytomegalovirus encodes a glycoprotein that is dispensable for growth in vitro. J Virol 66 6609 6615

34. StanleyP

1989 Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 9 377 383

35. BorkP

HolmL

SanderC

1994 The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 242 309 320

36. HarpazY

ChothiaC

1994 Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J Mol Biol 238 528 539

37. HalabyDM

PouponA

MornonJ

1999 The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng 12 563 571

38. BahadurRP

ZachariasM

2008 The interface of protein-protein complexes: analysis of contacts and prediction of interactions. Cell Mol Life Sci 65 1059 1072

39. LawrenceMC

ColmanPM

1993 Shape complementarity at protein/protein interfaces. J Mol Biol 234 946 950

40. McFarlandBJ

StrongRK

2003 Thermodynamic analysis of degenerate recognition by the NKG2D immunoreceptor: not induced fit but rigid adaptation. Immunity 19 803 812

41. StebbinsCE

GalanJE

2001 Structural mimicry in bacterial virulence. Nature 412 701 705

42. AlcamiA

2003 Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3 36 50

43. LambrisJD

RicklinD

GeisbrechtBV

2008 Complement evasion by human pathogens. Nat Rev Microbiol 6 132 142

44. van CleefKW

SmitMJ

BruggemanCA

VinkC

2006 Cytomegalovirus-encoded homologs of G protein-coupled receptors and chemokines. J Clin Virol 35 343 348

45. YangZ

BjorkmanPJ

2008 Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc Natl Acad Sci U S A 105 10095 10100

46. AlexanderJM

NelsonCA

van BerkelV

LauEK

StudtsJM

2002 Structural basis of chemokine sequestration by a herpesvirus decoy receptor. Cell 111 343 356

47. CarfiA

SmithCA

SmolakPJ

McGrewJ

WileyDC

1999 Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. Proc Natl Acad Sci U S A 96 12379 12383

48. McFarlandBJ

KortemmeT

YuSF

BakerD

StrongRK

2003 Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands. Structure 11 411 422

49. EmsleyP

CowtanK

2004 Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60 2126 2132

50. MansJ

ZhiL

RevillezaMJ

SmithL

RedwoodA

2009 Structure and function of murine cytomegalovirus MHC-I-like molecules: how the virus turned the host defense to its advantage. Immunol Res 43 264 279

51. SmithHR

HeuselJW

MehtaIK

KimS

DornerBG

2002 Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99 8826 8831

52. KrmpoticA

HasanM

LoewendorfA

SauligT

HaleniusA

2005 NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med 201 211 220

53. LodoenMB

AbenesG

UmamotoS

HouchinsJP

LiuF

2004 The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60-NKG2D interactions. J Exp Med 200 1075 1081

54. LenacT

ArapovicJ

TravenL

KrmpoticA

JonjicS

2008 Murine cytomegalovirus regulation of NKG2D ligands. Med Microbiol Immunol 197 159 166

55. PerssonBD

MullerS

ReiterDM

SchmittBB

MarttilaM

2009 An arginine switch in the species B adenovirus knob determines high-affinity engagement of cellular receptor CD46. J Virol 83 673 686

56. KabschW

1993 Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. Journal of Applied Crystallography 26 795 800

57. Collaborative Computational Project N 1994 The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50 760 763

58. TerwilligerT

2004 SOLVE and RESOLVE: automated structure solution, density modification and model building. J Synchrotron Radiat 11 49 52

59. AdamsPD

Grosse-KunstleveRW

HungLW

IoergerTR

McCoyAJ

2002 PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58 1948 1954

60. PainterJ

MerrittEA

2006 Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr D Biol Crystallogr 62 439 450

61. VriendG

1990 WHAT IF: a molecular modeling and drug design program. J Mol Graph 8 52 56, 29

62. KabschW

SanderC

1983 Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22 2577 2637

63. DeLanoWL

2002 The Pymol Molecular Graphics System.

64. Bohne-LangA

von der LiethCW

2005 GlyProt: in silico glycosylation of proteins. Nucleic Acids Res 33 W214 219

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#