Modelling the Evolution and Spread of HIV Immune Escape Mutants
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.
Vyšlo v časopise:
Modelling the Evolution and Spread of HIV Immune Escape Mutants. PLoS Pathog 6(11): e32767. doi:10.1371/journal.ppat.1001196
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001196
Souhrn
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.
Zdroje
1. PhillipsRE
Rowland-JonesS
NixonDF
GotchFM
EdwardsJP
1991 Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354 453 459
2. BorrowP
LewickiH
WeiX
HorwitzMS
PefferN
1997 Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 3 205 211
3. PriceDA
GoulderPJ
KlenermanP
SewellAK
EasterbrookPJ
1997 Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc Natl Acad Sci U S A 94 1890 1895
4. AsquithB
EdwardsCT
LipsitchM
McLeanAR
2006 Inefficient cytotoxic T lymphocyte-mediated killing of HIV-1-infected cells in vivo. PLoS Biol 4 e90
5. GoonetillekeN
LiuMK
Salazar-GonzalezJF
FerrariG
GiorgiE
2009 The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med 206 1253 1272
6. AllenTM
AltfeldM
YuXG
O'SullivanKM
LichterfeldM
2004 Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in human immunodeficiency virus type 1 infection. J Virol 78 7069 7078
7. GoulderPJ
BranderC
TangY
TremblayC
ColbertRA
2001 Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412 334 338
8. GoulderPJ
PhillipsRE
ColbertRA
McAdamS
OggG
1997 Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 3 212 217
9. FeeneyME
TangY
RooseveltKA
LeslieAJ
McIntoshK
2004 Immune escape precedes breakthrough human immunodeficiency virus type 1 viremia and broadening of the cytotoxic T-lymphocyte response in an HLA-B27-positive long-term-nonprogressing child. J Virol 78 8927 8930
10. KarlssonAC
IversenAK
ChapmanJM
de OlivieraT
SpottsG
2007 Sequential broadening of CTL responses in early HIV-1 infection is associated with viral escape. PLoS One 2 e225
11. GoepfertPA
LummW
FarmerP
MatthewsP
PrendergastA
2008 Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. J Exp Med 205 1009 1017
12. KawashimaY
PfafferottK
FraterJ
MatthewsP
PayneR
2009 Adaptation of HIV-1 to human leukocyte antigen class I. Nature 458 641 645
13. MooreCB
JohnM
JamesIR
ChristiansenFT
WittCS
2002 Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296 1439 1443
14. BhattacharyaT
DanielsM
HeckermanD
FoleyB
FrahmN
2007 Founder effects in the assessment of HIV polymorphisms and HLA allele associations. Science 315 1583 1586
15. PondSL
FrostSD
GrossmanZ
GravenorMB
RichmanDD
2006 Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLoS Comput Biol 2 e62
16. KiepielaP
LeslieAJ
HoneyborneI
RamduthD
ThobakgaleC
2004 Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432 769 775
17. LeslieAJ
PfafferottKJ
ChettyP
DraenertR
AddoMM
2004 HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 10 282 289
18. LiB
GladdenAD
AltfeldM
KaldorJM
CooperDA
2007 Rapid reversion of sequence polymorphisms dominates early human immunodeficiency virus type 1 evolution. J Virol 81 193 201
19. GeelsMJ
CornelissenM
SchuitemakerH
AndersonK
KwaD
2003 Identification of sequential viral escape mutants associated with altered T-cell responses in a human immunodeficiency virus type 1-infected individual. J Virol 77 12430 12440
20. KelleherAD
LongC
HolmesEC
AllenRL
WilsonJ
2001 Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J Exp Med 193 375 386
21. NowakMA
MayRM
PhillipsRE
Rowland-JonesS
LallooDG
1995 Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375 606 611
22. NowakMA
AndersonRM
McLeanAR
WolfsTF
GoudsmitJ
1991 Antigenic diversity thresholds and the development of AIDS. Science 254 963 969
23. AlthausCL
BonhoefferS
2005 Stochastic interplay between mutation and recombination during the acquisition of drug resistance mutations in human immunodeficiency virus type 1. J Virol 79 13572 13578
24. McLeanAR
EmeryVC
WebsterA
GriffithsPD
1991 Population dynamics of HIV within an individual after treatment with zidovudine. AIDS 5 485 489
25. FrostSD
NijhuisM
SchuurmanR
BoucherCA
BrownAJ
2000 Evolution of lamivudine resistance in human immunodeficiency virus type 1-infected individuals: the relative roles of drift and selection. J Virol 74 6262 6268
26. MarksAJ
PillayD
McLeanAR
2010 The effect of intrinsic stochasticity on transmitted HIV drug resistance patterns. J Theor Biol 262 1 13
27. BrownAJ
RichmanDD
1997 HIV-1: gambling on the evolution of drug resistance? Nat Med 3 268 271
28. PoonAFY
Kosakovsky PondSL
BennettP
RichmanDD
Leigh BrownAJ
2007 Adaptation to human populations is revealed by within-host polymorphisms in HIV-1 and hepatitis C virus. Plos Pathog 3 409 417
29. BaggaleyRF
FergusonNM
GarnettGP
2005 The epidemiological impact of antiretroviral use predicted by mathematical models: a review. Emerg Themes Epidemiol 2 9
30. ThompsonJN
BurdonJJ
1992 Gene-for-gene coevolution between plants and parasites. Nature 360 121 125
31. CromerD
WolinskySM
McLeanAR
2010 How fast could HIV change gene frequencies in the human population? Proc Biol Sci 277 1981 1989
32. FraterAJ
BrownH
OxeniusA
GunthardHF
HirschelB
2007 Effective T-cell responses select human immunodeficiency virus mutants and slow disease progression. J Virol 81 6742 6751
33. SchererA
FraterJ
OxeniusA
AgudeloJ
PriceDA
2004 Quantifiable cytotoxic T lymphocyte responses and HLA-related risk of progression to AIDS. Proc Natl Acad Sci U S A 101 12266 12270
34. OxeniusA
PriceDA
GunthardHF
DawsonSJ
FagardC
2002 Stimulation of HIV-specific cellular immunity by structured treatment interruption fails to enhance viral control in chronic HIV infection. Proc Natl Acad Sci U S A 99 13747 13752
35. DudaA
Lee-TurnerL
FoxJ
RobinsonN
DustanS
2009 HLA-associated clinical progression correlates with epitope reversion rates in early human immunodeficiency virus infection. J Virol 83 1228 1239
36. MarshSGE
ParhamP
BarberLD
2000 The HLA Factsbook: Academic Press
37. Swiss Confederation HIV and AIDS in Switzerland 2006. Federal Office of Public Health. March 2007
38. AndersonRM
MayRM
1991 Infectious diseases of humans: dynamics and control: Oxford and New York: Oxford University Press
39. MorganD
MaheC
MayanjaB
OkongoJM
LubegaR
2002 HIV-1 infection in rural Africa: is there a difference in median time to AIDS and survival compared with that in industrialized countries? AIDS 16 597 603
40. WawerMJ
GrayRH
SewankamboNK
SerwaddaD
LiX
2005 Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis 191 1403 1409
41. HollingsworthTD
AndersonRM
FraserC
2008 HIV-1 transmission, by stage of infection. J Infect Dis 198 687 693
42. RousseauCM
DanielsMG
CarlsonJM
KadieC
CrawfordH
2008 HLA class I-driven evolution of human immunodeficiency virus type 1 subtype c proteome: immune escape and viral load. J Virol 82 6434 6446
43. Salazar-GonzalezJF
SalazarMG
KeeleBF
LearnGH
GiorgiEE
2009 Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med 206 1273 1289
44. BonhoefferS
ChappeyC
ParkinNT
WhitcombJM
PetropoulosCJ
2004 Evidence for positive epistasis in HIV-1. Science 306 1547 1550
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 11
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Zn Inhibits Coronavirus and Arterivirus RNA Polymerase Activity and Zinc Ionophores Block the Replication of These Viruses in Cell Culture
- The Female Lower Genital Tract Is a Privileged Compartment with IL-10 Producing Dendritic Cells and Poor Th1 Immunity following Infection
- Crystal Structure and Size-Dependent Neutralization Properties of HK20, a Human Monoclonal Antibody Binding to the Highly Conserved Heptad Repeat 1 of gp41
- The Arabidopsis Resistance-Like Gene Is Activated by Mutations in and Contributes to Resistance to the Bacterial Effector AvrRps4