#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SV2 Mediates Entry of Tetanus Neurotoxin into Central Neurons


Tetanus neurotoxin causes the disease tetanus, which is characterized by rigid paralysis. The toxin acts by inhibiting the release of neurotransmitters from inhibitory neurons in the spinal cord that innervate motor neurons and is unique among the clostridial neurotoxins due to its ability to shuttle from the periphery to the central nervous system. Tetanus neurotoxin is thought to interact with a high affinity receptor complex that is composed of lipid and protein components; however, the identity of the protein receptor remains elusive. In the current study, we demonstrate that toxin binding, to dissociated hippocampal and spinal cord neurons, is greatly enhanced by driving synaptic vesicle exocytosis. Moreover, tetanus neurotoxin entry and subsequent cleavage of synaptobrevin II, the substrate for this toxin, was also dependent on synaptic vesicle recycling. Next, we identified the potential synaptic vesicle binding protein for the toxin and found that it corresponded to SV2; tetanus neurotoxin was unable to cleave synaptobrevin II in SV2 knockout neurons. Toxin entry into knockout neurons was rescued by infecting with viruses that express SV2A or SV2B. Tetanus toxin elicited the hyper excitability in dissociated spinal cord neurons - due to preferential loss of inhibitory transmission - that is characteristic of the disease. Surprisingly, in dissociated cortical cultures, low concentrations of the toxin preferentially acted on excitatory neurons. Further examination of the distribution of SV2A and SV2B in both spinal cord and cortical neurons revealed that SV2B is to a large extent localized to excitatory terminals, while SV2A is localized to inhibitory terminals. Therefore, the distinct effects of tetanus toxin on cortical and spinal cord neurons are not due to differential expression of SV2 isoforms. In summary, the findings reported here indicate that SV2A and SV2B mediate binding and entry of tetanus neurotoxin into central neurons.


Vyšlo v časopise: SV2 Mediates Entry of Tetanus Neurotoxin into Central Neurons. PLoS Pathog 6(11): e32767. doi:10.1371/journal.ppat.1001207
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001207

Souhrn

Tetanus neurotoxin causes the disease tetanus, which is characterized by rigid paralysis. The toxin acts by inhibiting the release of neurotransmitters from inhibitory neurons in the spinal cord that innervate motor neurons and is unique among the clostridial neurotoxins due to its ability to shuttle from the periphery to the central nervous system. Tetanus neurotoxin is thought to interact with a high affinity receptor complex that is composed of lipid and protein components; however, the identity of the protein receptor remains elusive. In the current study, we demonstrate that toxin binding, to dissociated hippocampal and spinal cord neurons, is greatly enhanced by driving synaptic vesicle exocytosis. Moreover, tetanus neurotoxin entry and subsequent cleavage of synaptobrevin II, the substrate for this toxin, was also dependent on synaptic vesicle recycling. Next, we identified the potential synaptic vesicle binding protein for the toxin and found that it corresponded to SV2; tetanus neurotoxin was unable to cleave synaptobrevin II in SV2 knockout neurons. Toxin entry into knockout neurons was rescued by infecting with viruses that express SV2A or SV2B. Tetanus toxin elicited the hyper excitability in dissociated spinal cord neurons - due to preferential loss of inhibitory transmission - that is characteristic of the disease. Surprisingly, in dissociated cortical cultures, low concentrations of the toxin preferentially acted on excitatory neurons. Further examination of the distribution of SV2A and SV2B in both spinal cord and cortical neurons revealed that SV2B is to a large extent localized to excitatory terminals, while SV2A is localized to inhibitory terminals. Therefore, the distinct effects of tetanus toxin on cortical and spinal cord neurons are not due to differential expression of SV2 isoforms. In summary, the findings reported here indicate that SV2A and SV2B mediate binding and entry of tetanus neurotoxin into central neurons.


Zdroje

1. SchiavoG

MatteoliM

MontecuccoC

2000 Neurotoxins affecting neuroexocytosis. Physiol Rev 80 717 766

2. FaberK

1890 Die Pathogenie des Tetanus. Berl Klin Wochenschr 27 710 717

3. TizzoniG

CattaniG

1890 Untersuchungen uber das Tetanusgift. Zentralbl Bakt 8 69 73

4. MontecuccoC

1995 Clostridial neurotoxins : the molecular pathogenesis of tetanus and botulism Berlin ; New York Springer vii, 278

5. SchiavoG

RossettoO

SantucciA

DasGuptaBR

MontecuccoC

1992 Botulinum neurotoxins are zinc proteins. J Biol Chem 267 23479 23483

6. BlasiJ

ChapmanER

LinkE

BinzT

YamasakiS

1993 Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365 160 163

7. BlasiJ

ChapmanER

YamasakiS

BinzT

NiemannH

1993 Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. Embo J 12 4821 4828

8. SchiavoG

MalizioC

TrimbleWS

Polverino de LauretoP

MilanG

1994 Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem 269 20213 20216

9. SchiavoG

SantucciA

DasguptaBR

MehtaPP

JontesJ

1993 Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett 335 99 103

10. SchiavoG

BenfenatiF

PoulainB

RossettoO

Polverino de LauretoP

1992 Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359 832 835

11. SudhofTC

RothmanJE

2009 Membrane fusion: grappling with SNARE and SM proteins. Science 323 474 477

12. ChapmanER

2002 Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3 498 508

13. SmithLDS

SugiyamaH

1988 Botulism : the organism, its toxins, the disease Springfield, Ill., USA Thomas xi, 171

14. HerrerosJ

NgT

SchiavoG

2001 Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol Biol Cell 12 2947 2960

15. LalliG

BohnertS

DeinhardtK

VerasteguiC

SchiavoG

2003 The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 11 431 437

16. BohnertS

SchiavoG

2005 Tetanus toxin is transported in a novel neuronal compartment characterized by a specialized pH regulation. J Biol Chem 280 42336 42344

17. DeinhardtK

SalinasS

VerasteguiC

WatsonR

WorthD

2006 Rab5 and Rab7 Control Endocytic Sorting along the Axonal Retrograde Transport Pathway. Neuron 52 293 305

18. SchwabME

SudaK

ThoenenH

1979 Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol 82 798 810

19. CurtisDR

De GroatWC

1968 Tetanus toxin and spinal inhibition. Brain Res 10 208 212

20. MontecuccoC

1986 How do tetanus and botulinum toxins bind to neuronal membranes? Trends in Biochemical Sciences 11 314 317

21. KitamuraM

TakamiyaK

AizawaS

FurukawaK

FurukawaK

1999 Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. Biochim Biophys Acta 1441 1 3

22. KitamuraM

IgimiS

FurukawaK

FurukawaK

2005 Different response of the knockout mice lacking b-series gangliosides against botulinum and tetanus toxins. Biochim Biophys Acta 1741 1 3

23. PierceEJ

DavisonMD

PartonRG

HabigWH

CritchleyDR

1986 Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. Biochem J 236 845 852

24. PartonRG

OcklefordCD

CritchleyDR

1988 Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization. Brain Res 475 118 127

25. YavinE

NathanA

1986 Tetanus toxin receptors on nerve cells contain a trypsin-sensitive component. Eur J Biochem 154 403 407

26. DeinhardtK

SchiavoG

2005 Endocytosis and retrograde axonal traffic in motor neurons. Biochem Soc Symp 139 150

27. DongM

YehF

TeppWH

DeanC

JohnsonEA

2006 SV2 is the protein receptor for botulinum neurotoxin A. Science 312 592 596

28. DongM

TeppWH

LiuH

JohnsonEA

ChapmanER

2007 Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol 179 1511 1522

29. DongM

RichardsDA

GoodnoughMC

TeppWH

JohnsonEA

2003 Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162 1293 1303

30. DongM

LiuH

TeppWH

JohnsonEA

JanzR

2008 Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19 5226 5237

31. NishikiT

KamataY

NemotoY

OmoriA

ItoT

1994 Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269 10498 10503

32. MahrholdS

RummelA

BigalkeH

DavletovB

BinzT

2006 The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580 2011 2014

33. RummelA

KarnathT

HenkeT

BigalkeH

BinzT

2004 Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279 30865 30870

34. MatteoliM

VerderioC

RossettoO

IezziN

CocoS

1996 Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc Natl Acad Sci U S A 93 13310 13315

35. MunroP

KojimaH

DupontJL

BossuJL

PoulainB

2001 High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein. Biochem Biophys Res Commun 289 623 629

36. PartonRG

OcklefordCD

CritchleyDR

1987 A study of the mechanism of internalisation of tetanus toxin by primary mouse spinal cord cultures. J Neurochem 49 1057 1068

37. HerrerosJ

LalliG

MontecuccoC

SchiavoG

2000 Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons. J Neurochem 74 1941 1950

38. GreeneCE

2006 Infectious diseases of the dog and cat St. Louis, Mo. Saunders Elsevier xxix, 1387

39. SchumakerHB

LamontA

FirorWM

1939 The reaction of “tetanus sensitive” and “tetanus resistant” animals to the injection of tetanal toxin into the spinal cord. J Immunol 37 425 433

40. BoxM

ParksDA

KnightA

HaleC

FishmanPS

2003 A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target 11 333 343

41. TakamoriS

HoltM

SteniusK

LemkeEA

GronborgM

2006 Molecular anatomy of a trafficking organelle. Cell 127 831 846

42. LalliG

HerrerosJ

OsborneSL

MontecuccoC

RossettoO

1999 Functional characterisation of tetanus and botulinum neurotoxins binding domains. J Cell Sci 112 Pt 16 2715 2724

43. BaldwinMR

BarbieriJT

2007 Association of botulinum neurotoxin serotypes a and B with synaptic vesicle protein complexes. Biochemistry 46 3200 3210

44. BizziniB

StoeckelK

SchwabM

1977 An antigenic polypeptide fragment isolated from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J Neurochem 28 529 542

45. DumasM

SchwabME

BaumannR

ThoenenH

1979 Retrograde transport of tetanus toxin through a chain of two neurons. Brain Res 165 354 357

46. MorrisNP

ConsiglioE

KohnLD

HabigWH

HardegreeMC

1980 Interaction of fragments B and C of tetanus toxin with neural and thyroid membranes and with gangliosides. J Biol Chem 255 6071 6076

47. WellerU

TaylorCF

HabermannE

1986 Quantitative comparison between tetanus toxin, some fragments and toxoid for binding and axonal transport in the rat. Toxicon 24 1055 1063

48. van der BliekAM

RedelmeierTE

DamkeH

TisdaleEJ

MeyerowitzEM

1993 Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol 122 553 563

49. SimpsonLL

1984 The binding fragment from tetanus toxin antagonizes the neuromuscular blocking actions of botulinum toxin. J Pharmacol Exp Ther 229 182 187

50. RummelA

HafnerK

MahrholdS

DarashchonakN

HoltM

2009 Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110 1942 1954

51. CrowderKM

GuntherJM

JonesTA

HaleBD

ZhangHZ

1999 Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci U S A 96 15268 15273

52. JanzR

GodaY

GeppertM

MisslerM

SudhofTC

1999 SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron 24 1003 1016

53. ScrantonTW

IwataM

CarlsonSS

1993 The SV2 protein of synaptic vesicles is a keratan sulfate proteoglycan. J Neurochem 61 29 44

54. JanzR

SudhofTC

1999 SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience 94 1279 1290

55. FeanyMB

LeeS

EdwardsRH

BuckleyKM

1992 The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 70 861 867

56. BuckleyK

KellyRB

1985 Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol 100 1284 1294

57. BajjaliehSM

PetersonK

ShinghalR

SchellerRH

1992 SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science 257 1271 1273

58. FuZ

ChenC

BarbieriJT

KimJJ

BaldwinMR

2009 Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 48 5631 5641

59. DeinhardtK

BerninghausenO

WillisonHJ

HopkinsCR

SchiavoG

2006 Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J Cell Biol 174 459 471

60. RouxS

ColasanteC

Saint ClomentC

BarbierJ

CurieT

2005 Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions. Mol Cell Neurosci 30 572 582

61. MatsudaM

SugimotoN

OzutsumiK

HiraiT

1982 Acute botulinum-like intoxication by tetanus neurotoxin in mice. Biochem Biophys Res Commun 104 799 805

62. NicholsBJ

2003 GM1-containing lipid rafts are depleted within clathrin-coated pits. Curr Biol 13 686 690

63. EvansDM

WilliamsRS

ShoneCC

HambletonP

MellingJ

1986 Botulinum neurotoxin type B. Its purification, radioiodination and interaction with rat-brain synaptosomal membranes. Eur J Biochem 154 409 416

64. SchmidtJJ

SiegelLS

1986 Purification of type E botulinum neurotoxin by high-performance ion exchange chromatography. Anal Biochem 156 213 219

65. ChenC

FuZ

KimJJ

BarbieriJT

BaldwinMR

2009 Gangliosides as high affinity receptors for tetanus neurotoxin. J Biol Chem 284 26569 26577

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#