Herpes Simplex Virus Reorganizes the Cellular DNA Repair and Protein Quality Control Machinery
article has not abstract
Vyšlo v časopise:
Herpes Simplex Virus Reorganizes the Cellular DNA Repair and Protein Quality Control Machinery. PLoS Pathog 6(11): e32767. doi:10.1371/journal.ppat.1001105
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001105
Souhrn
article has not abstract
Zdroje
1. QuinlanMP
ChenLB
KnipeDM
1984 The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell 36 857 868
2. LivingstonCM
DeLucaNA
WilkinsonDE
WellerSK
2008 Oligomerization of ICP4 and Rearrangement of Heat Shock Proteins May Be Important for Herpes Simplex Virus Type 1 Prereplicative Site Formation. J Virol 82 6324 6336
3. KuddusRH
DeLucaNA
2007 DNA-Dependent Oligomerization of Herpes Simplex Virus Type 1 Regulatory Protein ICP4. J Virol 81 9230 9237
4. Sandri-GoldinRM
2008 The many roles of the regulatory protein ICP27 during herpes simplex virus infection. Front Biosci 13 5241 5256
5. HagglundR
RoizmanB
2004 Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 78 2169 2178
6. SearsAE
HalliburtonIW
MeignierB
SilverS
RoizmanB
1985 Herpes simplex virus 1 mutant deleted in the alpha 22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. J Virol 55 338 346
7. EverettRD
2000 ICP0, a regulator of herpes simplex virus during lytic and latent infection. BioEssays 22 761 770
8. PaladinoP
MossmanKL
2009 Mechanisms employed by herpes simplex virus 1 to inhibit the interferon response. J Interferon Cytokine Res 29 599 607
9. FraserKA
RiceSA
2007 Herpes simplex virus immediate-early protein ICP22 triggers loss of serine 2-phosphorylated RNA polymerase II. J Virol 81 5091 5101
10. de Bruyn KopsA
KnipeDM
1994 Preexisting nuclear architecture defines the intranuclear location of herpesvirus DNA replication structures. J Virol 68 3512 3526
11. LiptakL
UprichardS
KnipeD
1996 Functional order of assembly of herpes simplex virus DNA replication proteins into prereplicative site structures. J Virol 70 1759 1767
12. LukonisC
WellerS
1997 Formation of herpes simplex virus type 1 replication compartments by transfection: requirements and localization to nuclear domain 10. J Virol 71 2390 2399
13. BurkhamJ
CoenDM
WellerSK
1998 ND10 Protein PML Is Recruited to Herpes Simplex Virus Type 1 Prereplicative Sites and Replication Compartments in the Presence of Viral DNA Polymerase. J Virol 72 10100 10107
14. EverettRD
MurrayJ
2005 ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79 5078 5089
15. EverettRD
FreemontP
SaitohH
DassoM
OrrA
1998 The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol 72 6581 6591
16. TaylorTJ
McNameeEE
DayC
KnipeDM
2003 Herpes simplex virus replication compartments can form by coalescence of smaller compartments. Virology 309 232 247
17. MonierK
ArmasJC
EtteldorfS
GhazalP
SullivanKF
2000 Annexation of the interchromosomal space during viral infection. Nat Cell Biol 2 661 665
18. Simpson-HolleyM
ColgroveRC
NalepaG
HarperJW
KnipeDM
2005 Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J Virol 79 12840 12851
19. BesseS
Puvion-DutilleulF
1996 Intranuclear retention of ribosomal RNAs in response to herpes simplex virus type 1 infection. J Cell Sci 109 Pt 1 119 129
20. ScottES
O'HareP
2001 Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection. J Virol 75 8818 8830
21. BurchAD
WellerSK
2004 Nuclear sequestration of cellular chaperone and proteasomal machinery during herpes simplex virus type 1 infection. J Virol 78 7175 7185
22. MathewSS
Della SelvaMP
BurchAD
2009 Modification and reorganization of the cytoprotective cellular chaperone Hsp27 during herpes simplex virus type 1 infection. J Virol 83 9304 9312
23. LiL
JohnsonLA
Dai-JuJQ
Sandri-GoldinRM
2008 Hsc70 focus formation at the periphery of HSV-1 transcription sites requires ICP27. PLoS ONE 3 e1491 doi:10.1371/journal.pone.0001491
24. LivingstonCM
IfrimMF
CowanAE
WellerSK
2009 Virus-induced chaperone-enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog 5 e1000619 doi:10.1371/journal.ppat.1000619
25. JahediS
MarkovitzNS
FilatovF
RoizmanB
1999 Colocalization of the herpes simplex virus 1 UL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J Virol 73 5132 5138
26. BastianTW
LivingstonCM
WellerSK
RiceSA
2010 Herpes simplex virus type 1 immediate-early protein ICP22 is required for VICE domain formation during productive viral infection. J Virol 84 2384 2394
27. TanakaM
KimYM
LeeG
JunnE
IwatsuboT
2004 Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem 279 4625 4631
28. TaylorJP
TanakaF
RobitschekJ
SandovalCM
TayeA
2003 Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet 12 749 757
29. EverettRD
2006 Interactions between DNA viruses, ND10 and the DNA damage response. Cellular Microbiol 8 365 374
30. WilkinsonD
WellerS
2003 The Role of DNA Recombination in Herpes Simplex Virus DNA Replication. IUBMB Life 55 451 458
31. LilleyCE
ChaurushiyaMS
WeitzmanMD
2009 Chromatin at the intersection of viral infection and DNA damage. Biochim Biophys Acta 1799 319 327
32. ParkinsonJ
Lees-MillerSP
EverettRD
1999 Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase. J Virol 73 650 657
33. ShirataN
KudohA
DaikokuT
TatsumiY
FujitaM
2005 Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection. J Biol Chem 280 30336 30341
34. WilkinsonDE
WellerSK
2006 Herpes simplex virus type I disrupts the ATR-dependent DNA-damage response during lytic infection. J Cell Sci 119 2695 2703
35. MohniKN
LivingstonCM
CortezD
WellerSK
2010 ATR and ATRIP are recruited to Herpes Simplex Virus type 1 replication compartments even though ATR signaling is disabled. J Virol E-pub ahead of print 22 September 2010
36. WilkinsonDE
WellerSK
2004 Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J Virol 78 4783 4796
37. LilleyCE
CarsonCT
MuotriAR
GageFH
WeitzmanMD
2005 DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci U S A 102 5844 5849
38. TaylorTJ
KnipeDM
2004 Proteomics of herpes simplex virus replication compartments: association of cellular dna replication, repair, recombination, and chromatin remodeling proteins with ICP8. J Virol 78 5856 5866
39. LilleyCE
ChaurushiyaMS
BoutellC
LandryS
SuhJ
2010 A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 29 943 9555
40. LambertiC
WellerSK
1996 The herpes simplex virus type 1 UL6 protein is essential for cleavage and packaging but not for genomic inversion. Virology 226 403 407
41. SeveriniA
ScrabaDG
TyrrellDL
1996 Branched structures in the intracellular DNA of herpes simplex virus type 1. J Virol 70 3169 3175
42. ZhangX
EfstathiouS
SimmonsA
1994 Identification of novel herpes simplex virus replicative intermediates by field inversion gel electrophoresis: implications for viral DNA amplification strategies. Virology 202 530 539
43. ReuvenNB
WillcoxS
GriffithJD
WellerSK
2004 Catalysis of strand exchange by the HSV-1 UL12 and ICP8 proteins: potent ICP8 recombinase activity is revealed upon resection of dsDNA substrate by nuclease. J Mol Biol 342 57 71
44. BalasubramanianN
BaiP
BuchekG
KorzaG
WellerSK
2010 Physical interaction between the herpes simplex virus type 1 exonuclease, UL12, and the DNA double strand break sensing MRN complex. J Virol E-pub ahead of print 13 October 2010
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 11
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Zn Inhibits Coronavirus and Arterivirus RNA Polymerase Activity and Zinc Ionophores Block the Replication of These Viruses in Cell Culture
- The Female Lower Genital Tract Is a Privileged Compartment with IL-10 Producing Dendritic Cells and Poor Th1 Immunity following Infection
- Crystal Structure and Size-Dependent Neutralization Properties of HK20, a Human Monoclonal Antibody Binding to the Highly Conserved Heptad Repeat 1 of gp41
- The Arabidopsis Resistance-Like Gene Is Activated by Mutations in and Contributes to Resistance to the Bacterial Effector AvrRps4