Compartmentation of Redox Metabolism in Malaria Parasites
Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito – a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes – glutathione reductase and thioredoxin reductase – Plasmodium makes use of alternative-translation-initiation (ATI) to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.
Vyšlo v časopise:
Compartmentation of Redox Metabolism in Malaria Parasites. PLoS Pathog 6(12): e32767. doi:10.1371/journal.ppat.1001242
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001242
Souhrn
Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito – a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes – glutathione reductase and thioredoxin reductase – Plasmodium makes use of alternative-translation-initiation (ATI) to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.
Zdroje
1. WHO 2009 World malria report 2009. Geneva, Switzerland
2. BeckerK
KoncarevicS
HuntNH
2005 Oxidative stress and antioxidant defense in malarial parasites.
ShermanIW
Molecular Approaches to Malaria Washington, DC ASM Press 365 383
3. BeckerK
TilleyL
VennerstromJL
RobertsD
RogersonS
2004 Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34 163 189
4. FarberPM
ArscottLD
WilliamsCHJr
BeckerK
SchirmerRH
1998 Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett 422 311 314
5. RahlfsS
FischerM
BeckerK
2001 Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain. J Biol Chem 276 37133 37140
6. DeponteM
BeckerK
RahlfsS
2005 Plasmodium falciparum glutaredoxin-like proteins. Biol Chem 386 33 40
7. Fritz-WolfK
BeckerA
RahlfsS
HarwaldtP
SchirmerRH
2003 X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 100 13821 13826
8. AkoachereM
IozefR
RahlfsS
DeponteM
MannervikB
2005 Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Biol Chem 386 41 52
9. NickelC
RahlfsS
DeponteM
KoncarevicS
BeckerK
2006 Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 8 1227 1239
10. MullerS
2004 Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol 53 1291 1305
11. KawazuS
TsujiN
HatabuT
KawaiS
MatsumotoY
2000 Molecular cloning and characterization of a peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 109 165 169
12. BecuweP
GratepancheS
FourmauxMN
Van BeeumenJ
SamynB
1996 Characterization of iron-dependent endogenous superoxide dismutase of Plasmodium falciparum. Mol Biochem Parasitol 76 125 134
13. SienkiewiczN
DaherW
DiveD
WrengerC
ViscogliosiE
2004 Identification of a mitochondrial superoxide dismutase with an unusual targeting sequence in Plasmodium falciparum. Mol Biochem Parasitol 137 121 132
14. McMillanPJ
StimmlerLM
FothBJ
McFaddenGI
MullerS
2005 The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases. Mol Microbiol 55 27 38
15. HuntNH
StockerR
1990 Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cells 16 499 526; discussion 527–430
16. CappelliniMD
FiorelliG
2008 Glucose-6-phosphate dehydrogenase deficiency. Lancet 371 64 74
17. TurrensJF
2004 Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol Aspects Med 25 211 220
18. RahlfsS
BeckerK
2006 Interference with redox-active enzymes as a basis for the design of antimalarial drugs. Mini Rev Med Chem 6 163 176
19. BriesemeisterS
RahnenfuhrerJ
KohlbacherO
Going from where to why-interpretable prediction of protein subcellular localization. Bioinformatics 26 1232 1238
20. BoucherIW
McMillanPJ
GabrielsenM
AkermanSE
BranniganJA
2006 Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum. Mol Microbiol 61 948 959
21. SarmaGN
NickelC
RahlfsS
FischerM
BeckerK
2005 Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J Mol Biol 346 1021 1034
22. SztajerH
GamainB
AumannKD
SlomiannyC
BeckerK
2001 The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 276 7397 7403
23. WallerRF
KeelingPJ
DonaldRG
StriepenB
HandmanE
1998 Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A 95 12352 12357
24. RalphSA
van DoorenGG
WallerRF
CrawfordMJ
FraunholzMJ
2004 Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2 203 216
25. de Koning-WardTF
GilsonPR
BoddeyJA
RugM
SmithBJ
2009 A newly discovered protein export machine in malaria parasites. Nature 459 945 949
26. NyalwidheJ
LingelbachK
2006 Proteases and chaperones are the most abundant proteins in the parasitophorous vacuole of Plasmodium falciparum-infected erythrocytes. Proteomics 6 1563 1573
27. KumarA
TanveerA
BiswasS
RamEV
GuptaA
2010 Nuclear-encoded DnaJ homologue of Plasmodium falciparum interacts with replication ori of the apicoplast genome. Mol Microbiol 75 942 956
28. SporkS
HissJA
MandelK
SommerM
KooijTW
2009 An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell 8 1134 1145
29. KroghA
LarssonB
von HeijneG
SonnhammerELL
2001 Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology 305 567 580
30. UrscherM
PrzyborskiJM
ImotoM
DeponteM
2010 Distinct Subcellular Localization in the Cytosol and Apicoplast, Unexpected Dimerization, and Inhibition of Plasmodium falciparum Glyoxalases. Mol Microbiol 76 92 103
31. GardnerMJ
HallN
FungE
WhiteO
BerrimanM
2002 Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419 498 511
32. MullerS
GilbergerTW
FarberPM
BeckerK
SchirmerRH
1996 Recombinant putative glutathione reductase of Plasmodium falciparum exhibits thioredoxin reductase activity. Mol Biochem Parasitol 80 215 219
33. FothBJ
RalphSA
TonkinCJ
StruckNS
FraunholzM
2003 Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299 705 708
34. WallerRF
ReedMB
CowmanAF
McFaddenGI
2000 Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. Embo J 19 1794 1802
35. TonkinCJ
FothBJ
RalphSA
StruckN
CowmanAF
2008 Evolution of malaria parasite plastid targeting sequences. Proc Natl Acad Sci U S A 105 4781 4785
36. TonkinCJ
StruckNS
MullinKA
StimmlerLM
McFaddenGI
2006 Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Mol Microbiol 61 614 630
37. KochetovAV
2008 Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 30 683 691
38. PorrasP
PadillaCA
KraylM
VoosW
BarcenaJA
2006 One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae. J Biol Chem 281 16551 16562
39. RalphSA
2007 Subcellular multitasking - multiple destinations and roles for the Plasmodium falcilysin protease. Mol Microbiol 63 309 313
40. MissirlisF
UlschmidJK
Hirosawa-TakamoriM
GronkeS
SchaferU
2002 Mitochondrial and cytoplasmic thioredoxin reductase variants encoded by a single Drosophila gene are both essential for viability. J Biol Chem 277 11521 11526
41. FleigeT
FischerK
FergusonDJ
GrossU
BohneW
2007 Carbohydrate metabolism in the Toxoplasma gondii apicoplast: localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. Eukaryot Cell 6 984 996
42. BalconiE
PennatiA
CrobuD
PandiniV
CeruttiR
2009 The ferredoxin-NADP+ reductase/ferredoxin electron transfer system of Plasmodium falciparum. Febs J 276 3825 3836
43. RiemerJ
BulleidN
HerrmannJM
2009 Disulfide formation in the ER and mitochondria: two solutions to a common process. Science 324 1284 1287
44. PinoP
FothBJ
KwokLY
SheinerL
SchepersR
2007 Dual targeting of antioxidant and metabolic enzymes to the mitochondrion and the apicoplast of Toxoplasma gondii. PLoS Pathog 3 e115
45. KoncarevicS
RohrbachP
DeponteM
KrohneG
PrietoJH
2009 The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. Proc Natl Acad Sci U S A 106 13323 13328
46. CrabbBS
RugM
GilbergerTW
ThompsonJK
TrigliaT
2004 Transfection of the human malaria parasite Plasmodium falciparum. Methods Mol Biol 270 263 276
47. TonkinCJ
van DoorenGG
SpurckTP
StruckNS
GoodRT
2004 Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol 137 13 21
48. RossnerM
YamadaKM
2004 What's in a picture? The temptation of image manipulation. J Cell Biol 166 11 15
49. TrangDT
HuyNT
KariuT
TajimaK
KameiK
2004 One-step concentration of malarial parasite-infected red blood cells and removal of contaminating white blood cells. Malar J 3 7
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 12
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- HIV-1 Envelope Subregion Length Variation during Disease Progression
- Coming of Age—Sexual Reproduction in Species
- Evidence That Intracellular Stages of Utilize Amino Sugars as a Major Carbon Source
- Compartmentation of Redox Metabolism in Malaria Parasites