#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Compartmentation of Redox Metabolism in Malaria Parasites


Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito – a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes – glutathione reductase and thioredoxin reductase – Plasmodium makes use of alternative-translation-initiation (ATI) to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.


Vyšlo v časopise: Compartmentation of Redox Metabolism in Malaria Parasites. PLoS Pathog 6(12): e32767. doi:10.1371/journal.ppat.1001242
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001242

Souhrn

Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito – a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes – glutathione reductase and thioredoxin reductase – Plasmodium makes use of alternative-translation-initiation (ATI) to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.


Zdroje

1. WHO 2009 World malria report 2009. Geneva, Switzerland

2. BeckerK

KoncarevicS

HuntNH

2005 Oxidative stress and antioxidant defense in malarial parasites.

ShermanIW

Molecular Approaches to Malaria Washington, DC ASM Press 365 383

3. BeckerK

TilleyL

VennerstromJL

RobertsD

RogersonS

2004 Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34 163 189

4. FarberPM

ArscottLD

WilliamsCHJr

BeckerK

SchirmerRH

1998 Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett 422 311 314

5. RahlfsS

FischerM

BeckerK

2001 Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain. J Biol Chem 276 37133 37140

6. DeponteM

BeckerK

RahlfsS

2005 Plasmodium falciparum glutaredoxin-like proteins. Biol Chem 386 33 40

7. Fritz-WolfK

BeckerA

RahlfsS

HarwaldtP

SchirmerRH

2003 X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 100 13821 13826

8. AkoachereM

IozefR

RahlfsS

DeponteM

MannervikB

2005 Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Biol Chem 386 41 52

9. NickelC

RahlfsS

DeponteM

KoncarevicS

BeckerK

2006 Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 8 1227 1239

10. MullerS

2004 Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol 53 1291 1305

11. KawazuS

TsujiN

HatabuT

KawaiS

MatsumotoY

2000 Molecular cloning and characterization of a peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 109 165 169

12. BecuweP

GratepancheS

FourmauxMN

Van BeeumenJ

SamynB

1996 Characterization of iron-dependent endogenous superoxide dismutase of Plasmodium falciparum. Mol Biochem Parasitol 76 125 134

13. SienkiewiczN

DaherW

DiveD

WrengerC

ViscogliosiE

2004 Identification of a mitochondrial superoxide dismutase with an unusual targeting sequence in Plasmodium falciparum. Mol Biochem Parasitol 137 121 132

14. McMillanPJ

StimmlerLM

FothBJ

McFaddenGI

MullerS

2005 The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases. Mol Microbiol 55 27 38

15. HuntNH

StockerR

1990 Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cells 16 499 526; discussion 527–430

16. CappelliniMD

FiorelliG

2008 Glucose-6-phosphate dehydrogenase deficiency. Lancet 371 64 74

17. TurrensJF

2004 Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Mol Aspects Med 25 211 220

18. RahlfsS

BeckerK

2006 Interference with redox-active enzymes as a basis for the design of antimalarial drugs. Mini Rev Med Chem 6 163 176

19. BriesemeisterS

RahnenfuhrerJ

KohlbacherO

Going from where to why-interpretable prediction of protein subcellular localization. Bioinformatics 26 1232 1238

20. BoucherIW

McMillanPJ

GabrielsenM

AkermanSE

BranniganJA

2006 Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum. Mol Microbiol 61 948 959

21. SarmaGN

NickelC

RahlfsS

FischerM

BeckerK

2005 Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J Mol Biol 346 1021 1034

22. SztajerH

GamainB

AumannKD

SlomiannyC

BeckerK

2001 The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 276 7397 7403

23. WallerRF

KeelingPJ

DonaldRG

StriepenB

HandmanE

1998 Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci U S A 95 12352 12357

24. RalphSA

van DoorenGG

WallerRF

CrawfordMJ

FraunholzMJ

2004 Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2 203 216

25. de Koning-WardTF

GilsonPR

BoddeyJA

RugM

SmithBJ

2009 A newly discovered protein export machine in malaria parasites. Nature 459 945 949

26. NyalwidheJ

LingelbachK

2006 Proteases and chaperones are the most abundant proteins in the parasitophorous vacuole of Plasmodium falciparum-infected erythrocytes. Proteomics 6 1563 1573

27. KumarA

TanveerA

BiswasS

RamEV

GuptaA

2010 Nuclear-encoded DnaJ homologue of Plasmodium falciparum interacts with replication ori of the apicoplast genome. Mol Microbiol 75 942 956

28. SporkS

HissJA

MandelK

SommerM

KooijTW

2009 An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell 8 1134 1145

29. KroghA

LarssonB

von HeijneG

SonnhammerELL

2001 Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology 305 567 580

30. UrscherM

PrzyborskiJM

ImotoM

DeponteM

2010 Distinct Subcellular Localization in the Cytosol and Apicoplast, Unexpected Dimerization, and Inhibition of Plasmodium falciparum Glyoxalases. Mol Microbiol 76 92 103

31. GardnerMJ

HallN

FungE

WhiteO

BerrimanM

2002 Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419 498 511

32. MullerS

GilbergerTW

FarberPM

BeckerK

SchirmerRH

1996 Recombinant putative glutathione reductase of Plasmodium falciparum exhibits thioredoxin reductase activity. Mol Biochem Parasitol 80 215 219

33. FothBJ

RalphSA

TonkinCJ

StruckNS

FraunholzM

2003 Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299 705 708

34. WallerRF

ReedMB

CowmanAF

McFaddenGI

2000 Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. Embo J 19 1794 1802

35. TonkinCJ

FothBJ

RalphSA

StruckN

CowmanAF

2008 Evolution of malaria parasite plastid targeting sequences. Proc Natl Acad Sci U S A 105 4781 4785

36. TonkinCJ

StruckNS

MullinKA

StimmlerLM

McFaddenGI

2006 Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Mol Microbiol 61 614 630

37. KochetovAV

2008 Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 30 683 691

38. PorrasP

PadillaCA

KraylM

VoosW

BarcenaJA

2006 One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae. J Biol Chem 281 16551 16562

39. RalphSA

2007 Subcellular multitasking - multiple destinations and roles for the Plasmodium falcilysin protease. Mol Microbiol 63 309 313

40. MissirlisF

UlschmidJK

Hirosawa-TakamoriM

GronkeS

SchaferU

2002 Mitochondrial and cytoplasmic thioredoxin reductase variants encoded by a single Drosophila gene are both essential for viability. J Biol Chem 277 11521 11526

41. FleigeT

FischerK

FergusonDJ

GrossU

BohneW

2007 Carbohydrate metabolism in the Toxoplasma gondii apicoplast: localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. Eukaryot Cell 6 984 996

42. BalconiE

PennatiA

CrobuD

PandiniV

CeruttiR

2009 The ferredoxin-NADP+ reductase/ferredoxin electron transfer system of Plasmodium falciparum. Febs J 276 3825 3836

43. RiemerJ

BulleidN

HerrmannJM

2009 Disulfide formation in the ER and mitochondria: two solutions to a common process. Science 324 1284 1287

44. PinoP

FothBJ

KwokLY

SheinerL

SchepersR

2007 Dual targeting of antioxidant and metabolic enzymes to the mitochondrion and the apicoplast of Toxoplasma gondii. PLoS Pathog 3 e115

45. KoncarevicS

RohrbachP

DeponteM

KrohneG

PrietoJH

2009 The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. Proc Natl Acad Sci U S A 106 13323 13328

46. CrabbBS

RugM

GilbergerTW

ThompsonJK

TrigliaT

2004 Transfection of the human malaria parasite Plasmodium falciparum. Methods Mol Biol 270 263 276

47. TonkinCJ

van DoorenGG

SpurckTP

StruckNS

GoodRT

2004 Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol 137 13 21

48. RossnerM

YamadaKM

2004 What's in a picture? The temptation of image manipulation. J Cell Biol 166 11 15

49. TrangDT

HuyNT

KariuT

TajimaK

KameiK

2004 One-step concentration of malarial parasite-infected red blood cells and removal of contaminating white blood cells. Malar J 3 7

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#