Development of an RNAi Protocol to Investigate Gene Function in the Filarial Nematode,
Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi) is a reverse-genetics tool with great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for parasitic nematodes, which remove the parasite from the host and execute RNAi in vitro, are unreliable and inconsistent. We have established an alternative in vivo RNAi protocol targeting the filarial nematode Brugia malayi as it develops in an intermediate host, the mosquito Aedes aegypti. Injection of worm-derived short interfering RNA (siRNA) and double stranded RNA (dsRNA) into parasitized mosquitoes elicits suppression of B. malayi target gene transcript abundance in a concentration-dependent fashion. The suppression of this gene, a cathepsin L-like cysteine protease (Bm-cpl-1) is specific and profound, both injection of siRNA and dsRNA reduce transcript abundance by 83%. In vivo Bm-cpl-1 suppression results in multiple aberrant phenotypes; worm motility is inhibited by up to 69% and parasites exhibit slow-moving, kinked and partial-paralysis postures. Bm-cpl-1 suppression also retards worm growth by 48%. Bm-cpl-1 suppression ultimately prevents parasite development within the mosquito and effectively abolishes transmission potential because parasites do not migrate to the head and proboscis. Finally, Bm-cpl-1 suppression decreases parasite burden and increases mosquito survival. This is the first demonstration of in vivo RNAi in animal parasitic nematodes and results indicate this protocol is more effective than existing in vitro RNAi methods. The potential of this new protocol to investigate parasitic nematode biology and to identify and validate novel anthelmintic drug targets is discussed.
Vyšlo v časopise:
Development of an RNAi Protocol to Investigate Gene Function in the Filarial Nematode,. PLoS Pathog 6(12): e32767. doi:10.1371/journal.ppat.1001239
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001239
Souhrn
Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi) is a reverse-genetics tool with great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for parasitic nematodes, which remove the parasite from the host and execute RNAi in vitro, are unreliable and inconsistent. We have established an alternative in vivo RNAi protocol targeting the filarial nematode Brugia malayi as it develops in an intermediate host, the mosquito Aedes aegypti. Injection of worm-derived short interfering RNA (siRNA) and double stranded RNA (dsRNA) into parasitized mosquitoes elicits suppression of B. malayi target gene transcript abundance in a concentration-dependent fashion. The suppression of this gene, a cathepsin L-like cysteine protease (Bm-cpl-1) is specific and profound, both injection of siRNA and dsRNA reduce transcript abundance by 83%. In vivo Bm-cpl-1 suppression results in multiple aberrant phenotypes; worm motility is inhibited by up to 69% and parasites exhibit slow-moving, kinked and partial-paralysis postures. Bm-cpl-1 suppression also retards worm growth by 48%. Bm-cpl-1 suppression ultimately prevents parasite development within the mosquito and effectively abolishes transmission potential because parasites do not migrate to the head and proboscis. Finally, Bm-cpl-1 suppression decreases parasite burden and increases mosquito survival. This is the first demonstration of in vivo RNAi in animal parasitic nematodes and results indicate this protocol is more effective than existing in vitro RNAi methods. The potential of this new protocol to investigate parasitic nematode biology and to identify and validate novel anthelmintic drug targets is discussed.
Zdroje
1. World Health Organization 2009 Global programme to eliminate lymphatic filariasis. Weekly epidemiological record 42 84 437 444
2. OttesenEA
HooperPJ
BradleyM
BiswasG
2008 The global programme to eliminate lymphatic filariasis: health impact after 8 years. PLoS Negl Trop Dis 2 10 e317
3. BennettJL
WilliamsJF
DaveV
1988 Pharmacology of ivermectin. Parasitol Today 4 8 226 228
4. PaxRA
WilliamsJF
GuderianRH
1988 In vitro motility of isolated adults and segments of Onchocerca volvulus, Brugia pahangi and Acanthocheilonema viteae. Trop Med Parasitol 39 Suppl 4 450 455
5. NoroesJ
DreyerG
SantosA
MendesVG
MedeirosZ
1997 Assessment of the efficacy of diethylcarbamazine on adult Wuchereria bancrofti in vivo. Trans R Soc Trop Med Hyg 91 1 78 81
6. BartzS
JacksonAL
2005 How will RNAi facilitate drug development? Sci STKE 2005 295 pe39
7. GearyTG
WooK
McCarthyJS
MackenzieCD
HortonJ
2010 Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol 40 1 1 13
8. BlakeR
2007 Target validation in drug discovery.
TaylorD
HaskinsJ
GuilianoK
Methods in Molecular Biology: High Content Screening: Humana Press 367 377
9. GeldhofP
VisserA
ClarkD
SaundersG
BrittonC
2007 RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects. Parasitology 134 Pt 5 609 619
10. HusseinAS
KicheninK
SelkirkME
2002 Suppression of secreted acetylcholinesterase expression in Nippostrongylus brasiliensis by RNA interference. Mol Biochem Parasitol 122 1 91 94
11. IslamMK
MiyoshiT
YamadaM
TsujiN
2005 Pyrophosphatase of the roundworm Ascaris suum plays an essential role in the worm's molting and development. Infect Immun 73 4 1995 2004
12. IssaZ
GrantWN
StasiukS
ShoemakerCB
2005 Development of methods for RNA interference in the sheep gastrointestinal parasite, Trichostrongylus colubriformis. Int J Parasitol 35 9 935 940
13. VisserA
GeldhofP
de MaereV
KnoxDP
VercruysseJ
2006 Efficacy and specificity of RNA interference in larval life-stages of Ostertagia ostertagi. Parasitology 133 Pt 6 777 783
14. GeldhofP
MurrayL
CouthierA
GilleardJS
McLauchlanG
2006 Testing the efficacy of RNA interference in Haemonchus contortus. Int J Parasitol 36 7 801 810
15. KotzeAC
BagnallNH
2006 RNA interference in Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro. Mol Biochem Parasitol 145 1 101 110
16. AboobakerAA
BlaxterML
2003 Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Mol Biochem Parasitol 129 1 41 51
17. FordL
ZhangJ
LiuJ
HashmiS
FuhrmanJA
2009 Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference. PLoS Negl Trop Dis 3 2 e377
18. LustigmanS
ZhangJ
LiuJ
OksovY
HashmiS
2004 RNA interference targeting cathepsin L and Z-like cysteine proteases of Onchocerca volvulus confirmed their essential function during L3 molting. Mol Biochem Parasitol 138 2 165 170
19. FordL
GuilianoDB
OksovY
DebnathAK
LiuJ
2005 Characterization of a novel filarial serine protease inhibitor, Ov-SPI-1, from Onchocerca volvulus, with potential multifunctional roles during development of the parasite. J Biol Chem 280 49 40845 40856
20. PfarrK
HeiderU
HoeraufA
2006 RNAi mediated silencing of actin expression in adult Litomosoides sigmodontis is specific, persistent and results in a phenotype. Int J Parasitol 36 6 661 669
21. FireA
XuS
MontgomeryMK
KostasSA
DriverSE
1998 Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391 6669 806 811
22. FraserAG
KamathRS
ZipperlenP
Martinez-CamposM
SohrmannM
2000 Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408 6810 325 330
23. KamathRS
Martinez-CamposM
ZipperlenP
FraserAG
AhringerJ
2001 Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2 1 RESEARCH0002
24. UrwinPE
LilleyCJ
AtkinsonHJ
2002 Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 15 8 747 752
25. BakhetiaM
CharltonW
AtkinsonHJ
McPhersonMJ
2005 RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Mol Plant Microbe Interact 18 10 1099 1106
26. KimberMJ
McKinneyS
McMasterS
DayTA
FlemingCC
2007 flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. Faseb J 21 4 1233 1243
27. ShinglesJ
LilleyCJ
AtkinsonHJ
UrwinPE
2007 Meloidogyne incognita: molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp Parasitol 115 2 114 120
28. DalzellJJ
McMasterS
FlemingCC
MauleAG
2010 Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. Int J Parasitol 40 1 91 100
29. VineyME
ThompsonFJ
2008 Two hypotheses to explain why RNA interference does not work in animal parasitic nematodes. Int J Parasitol 38 1 43 47
30. LendnerM
DoligalskaM
LuciusR
HartmannS
2008 Attempts to establish RNA interference in the parasitic nematode Heligmosomoides polygyrus. Mol Biochem Parasitol 161 1 21 31
31. BoissonB
CJaquesJ
ChoumetV
MartinE
ZXuJ
2006 Gene silencing in mosquito salivary glands by RNAi. FEBS Letters 580 1988 1992
32. PfafflMW
2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29 9 e45
33. LaneySJ
ButtaroCJ
ViscontiS
PilotteN
RamzyRM
2008 A reverse transcriptase-PCR assay for detecting filarial infective larvae in mosquitoes. PLoS Negl Trop Dis 2 6 e251
34. GuilianoDB
HongX
McKerrowJH
BlaxterML
OksovY
2004 A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling. Mol Biochem Parasitol 136 2 227 242
35. EricksonSM
XiZ
MayhewGF
RamirezJL
AliotaMT
2009 Mosquito infection responses to developing filarial worms. PLoS Negl Trop Dis 3 10 e529
36. DalzellJJ
McMasterS
JohnstonMJ
KerrR
FlemingCC
2009 Non-nematode-derived double-stranded RNAs induce profound phenotypic changes in Meloidogyne incognita and Globodera pallida infective juveniles. Int J Parasitol 39 13 1503 1516
37. ChristensenBM
SutherlandDR
1984 Brugia pahangi: Exsheathment and midgut penetration in Aedes aegypti. Transactions of the American Microscopical Society 103 4 423 433
38. MurthyPK
SenAB
1981 Sequential development changes in microfilariae of subperiodic Brugia malayi to infective larvae in susceptible strain of Aedes aegypti (Macdonald). J Commun Dis 13 2 102 109
39. BartholomayLC
ChristensenBM
2002 Vector-parasite interactions in mosquito-borne filariasis.
KleiT
RajanT
The Filaria. 1 ed Boston Kluwer Academic Publishers 9 19
40. BeckettEB
BoothroydB
1970 Mode of nutrition of the larvae of the filarial nematode Brugia pahangi. Parasitol 60 21 26
41. AliotaMT
FuchsJF
RocheleauTA
ClarkAK
HillyerJF
2010 Mosquito transcriptome profiles and filarial worm susceptibility in Armigeres subalbatus. PLoS Negl Trop Dis 4 4 e666
42. TimmonsL
CourtDL
FireA
2001 Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263 1–2 103 112
43. ShannonAJ
TysonT
DixI
BoydJ
BurnellAM
2008 Systemic RNAi mediated gene silencing in the anhydrobiotic nematode Panagrolaimus superbus. BMC Mol Biol 9 58
44. RicherJK
HuntWG
SakanariJA
GrieveRB
1993 Dirofilaria immitis: effect of fluoromethyl ketone cysteine protease inhibitors on the third- to fourth-stage molt. Exp Parasitol 76 3 221 231
45. LustigmanS
McKerrowJH
ShahK
LuiJ
HuimaT
1996 Cloning of a cysteine protease required for the molting of Onchocerca volvulus third stage larvae. J Biol Chem 271 47 30181 30189
46. HashmiS
BrittonC
LiuJ
GuilianoDB
OksovY
2002 Cathepsin L is essential for embryogenesis and development of Caenorhabditis elegans. J Biol Chem 277 5 3477 3486
47. McGonigleL
MousleyA
MarksNJ
BrennanGP
DaltonJP
2008 The silencing of cysteine proteases in Fasciola hepatica newly excysted juveniles using RNA interference reduces gut penetration. Int J Parasitol 38 2 149 155
48. HuangG
AllenR
DavisEL
BaumTJ
HusseyRS
2006 Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103 39 14302 14306
49. SteevesRM
ToddTC
EssigJS
TrickHN
2006 Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33 991 999
50. SindhuAS
MaierTR
MitchumMG
HusseyRS
DavisEL
2009 Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60 1 315 324
51. CoatesCJ
JasinskieneN
MiyashiroL
JamesAA
1998 Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 95 7 3748 3751
52. JasinskieneN
CoatesCJ
BenedictMQ
CornelAJ
RaffertyCS
1998 Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. PNAS 95 7 3743 3747
53. CatterucciaF
NolanT
LoukerisTG
BlassC
SavakisC
2000 Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405 959 962
54. KokozaV
AhmedA
ChoWL
JasinskieneN
JamesAA
2000 Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 97 16 9144 9149
55. MoreiraLA
EdwardsMJ
AdhamiF
JasinskieneN
JamesAA
2000 Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A 97 20 10895 10898
56. FranzAW
Sanchez-VargasI
AdelmanZN
BlairCD
BeatyBJ
2006 Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci U S A 103 11 4198 4203
57. AllenML
ChristensenBM
2004 Flight muscle-specific expression of act88F: GFP in transgenic Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Int 53 307 314
58. McKerrowJH
1999 Development of cysteine protease inhibitors as chemotherapy for parasitic diseases: insights on safety, target validation, and mechanism of action. Int J Parasitol 29 6 833 837
59. MacDonaldWW
1962 The selection of a strain of Aedes aegypti susceptible to infection with semi-periodic Brugia malayi. Ann Trop Med Parasit 56 368 372
60. BeerntsenBT
BartholomayLC
LoweryRJ
2007 Penetration of the mosquito midgut is not required for Brugia pahangi microfilariae to avoid the melanotic encapsulation response of Armigeres subalbatus. Vet Parasitol 144 3-4 371 374
61. HayesRO
1953 Determination of a physiological saline solution for Aedes aegypti (L.). Journal of Economic Entomology 46 4 624 627
62. GallupJM
SowFB
Van GeelenA
AckermannMR
2009 SPUD qPCR Assay Confirms PREXCEL-Q Softwares Ability to Avoid qPCR Inhibition. Curr Issues Mol Biol 12 3 129 134
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 12
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- HIV-1 Envelope Subregion Length Variation during Disease Progression
- Coming of Age—Sexual Reproduction in Species
- Evidence That Intracellular Stages of Utilize Amino Sugars as a Major Carbon Source
- Compartmentation of Redox Metabolism in Malaria Parasites