#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Development of an RNAi Protocol to Investigate Gene Function in the Filarial Nematode,


Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi) is a reverse-genetics tool with great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for parasitic nematodes, which remove the parasite from the host and execute RNAi in vitro, are unreliable and inconsistent. We have established an alternative in vivo RNAi protocol targeting the filarial nematode Brugia malayi as it develops in an intermediate host, the mosquito Aedes aegypti. Injection of worm-derived short interfering RNA (siRNA) and double stranded RNA (dsRNA) into parasitized mosquitoes elicits suppression of B. malayi target gene transcript abundance in a concentration-dependent fashion. The suppression of this gene, a cathepsin L-like cysteine protease (Bm-cpl-1) is specific and profound, both injection of siRNA and dsRNA reduce transcript abundance by 83%. In vivo Bm-cpl-1 suppression results in multiple aberrant phenotypes; worm motility is inhibited by up to 69% and parasites exhibit slow-moving, kinked and partial-paralysis postures. Bm-cpl-1 suppression also retards worm growth by 48%. Bm-cpl-1 suppression ultimately prevents parasite development within the mosquito and effectively abolishes transmission potential because parasites do not migrate to the head and proboscis. Finally, Bm-cpl-1 suppression decreases parasite burden and increases mosquito survival. This is the first demonstration of in vivo RNAi in animal parasitic nematodes and results indicate this protocol is more effective than existing in vitro RNAi methods. The potential of this new protocol to investigate parasitic nematode biology and to identify and validate novel anthelmintic drug targets is discussed.


Vyšlo v časopise: Development of an RNAi Protocol to Investigate Gene Function in the Filarial Nematode,. PLoS Pathog 6(12): e32767. doi:10.1371/journal.ppat.1001239
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001239

Souhrn

Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi) is a reverse-genetics tool with great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for parasitic nematodes, which remove the parasite from the host and execute RNAi in vitro, are unreliable and inconsistent. We have established an alternative in vivo RNAi protocol targeting the filarial nematode Brugia malayi as it develops in an intermediate host, the mosquito Aedes aegypti. Injection of worm-derived short interfering RNA (siRNA) and double stranded RNA (dsRNA) into parasitized mosquitoes elicits suppression of B. malayi target gene transcript abundance in a concentration-dependent fashion. The suppression of this gene, a cathepsin L-like cysteine protease (Bm-cpl-1) is specific and profound, both injection of siRNA and dsRNA reduce transcript abundance by 83%. In vivo Bm-cpl-1 suppression results in multiple aberrant phenotypes; worm motility is inhibited by up to 69% and parasites exhibit slow-moving, kinked and partial-paralysis postures. Bm-cpl-1 suppression also retards worm growth by 48%. Bm-cpl-1 suppression ultimately prevents parasite development within the mosquito and effectively abolishes transmission potential because parasites do not migrate to the head and proboscis. Finally, Bm-cpl-1 suppression decreases parasite burden and increases mosquito survival. This is the first demonstration of in vivo RNAi in animal parasitic nematodes and results indicate this protocol is more effective than existing in vitro RNAi methods. The potential of this new protocol to investigate parasitic nematode biology and to identify and validate novel anthelmintic drug targets is discussed.


Zdroje

1. World Health Organization 2009 Global programme to eliminate lymphatic filariasis. Weekly epidemiological record 42 84 437 444

2. OttesenEA

HooperPJ

BradleyM

BiswasG

2008 The global programme to eliminate lymphatic filariasis: health impact after 8 years. PLoS Negl Trop Dis 2 10 e317

3. BennettJL

WilliamsJF

DaveV

1988 Pharmacology of ivermectin. Parasitol Today 4 8 226 228

4. PaxRA

WilliamsJF

GuderianRH

1988 In vitro motility of isolated adults and segments of Onchocerca volvulus, Brugia pahangi and Acanthocheilonema viteae. Trop Med Parasitol 39 Suppl 4 450 455

5. NoroesJ

DreyerG

SantosA

MendesVG

MedeirosZ

1997 Assessment of the efficacy of diethylcarbamazine on adult Wuchereria bancrofti in vivo. Trans R Soc Trop Med Hyg 91 1 78 81

6. BartzS

JacksonAL

2005 How will RNAi facilitate drug development? Sci STKE 2005 295 pe39

7. GearyTG

WooK

McCarthyJS

MackenzieCD

HortonJ

2010 Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol 40 1 1 13

8. BlakeR

2007 Target validation in drug discovery.

TaylorD

HaskinsJ

GuilianoK

Methods in Molecular Biology: High Content Screening: Humana Press 367 377

9. GeldhofP

VisserA

ClarkD

SaundersG

BrittonC

2007 RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects. Parasitology 134 Pt 5 609 619

10. HusseinAS

KicheninK

SelkirkME

2002 Suppression of secreted acetylcholinesterase expression in Nippostrongylus brasiliensis by RNA interference. Mol Biochem Parasitol 122 1 91 94

11. IslamMK

MiyoshiT

YamadaM

TsujiN

2005 Pyrophosphatase of the roundworm Ascaris suum plays an essential role in the worm's molting and development. Infect Immun 73 4 1995 2004

12. IssaZ

GrantWN

StasiukS

ShoemakerCB

2005 Development of methods for RNA interference in the sheep gastrointestinal parasite, Trichostrongylus colubriformis. Int J Parasitol 35 9 935 940

13. VisserA

GeldhofP

de MaereV

KnoxDP

VercruysseJ

2006 Efficacy and specificity of RNA interference in larval life-stages of Ostertagia ostertagi. Parasitology 133 Pt 6 777 783

14. GeldhofP

MurrayL

CouthierA

GilleardJS

McLauchlanG

2006 Testing the efficacy of RNA interference in Haemonchus contortus. Int J Parasitol 36 7 801 810

15. KotzeAC

BagnallNH

2006 RNA interference in Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro. Mol Biochem Parasitol 145 1 101 110

16. AboobakerAA

BlaxterML

2003 Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Mol Biochem Parasitol 129 1 41 51

17. FordL

ZhangJ

LiuJ

HashmiS

FuhrmanJA

2009 Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference. PLoS Negl Trop Dis 3 2 e377

18. LustigmanS

ZhangJ

LiuJ

OksovY

HashmiS

2004 RNA interference targeting cathepsin L and Z-like cysteine proteases of Onchocerca volvulus confirmed their essential function during L3 molting. Mol Biochem Parasitol 138 2 165 170

19. FordL

GuilianoDB

OksovY

DebnathAK

LiuJ

2005 Characterization of a novel filarial serine protease inhibitor, Ov-SPI-1, from Onchocerca volvulus, with potential multifunctional roles during development of the parasite. J Biol Chem 280 49 40845 40856

20. PfarrK

HeiderU

HoeraufA

2006 RNAi mediated silencing of actin expression in adult Litomosoides sigmodontis is specific, persistent and results in a phenotype. Int J Parasitol 36 6 661 669

21. FireA

XuS

MontgomeryMK

KostasSA

DriverSE

1998 Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391 6669 806 811

22. FraserAG

KamathRS

ZipperlenP

Martinez-CamposM

SohrmannM

2000 Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408 6810 325 330

23. KamathRS

Martinez-CamposM

ZipperlenP

FraserAG

AhringerJ

2001 Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2 1 RESEARCH0002

24. UrwinPE

LilleyCJ

AtkinsonHJ

2002 Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 15 8 747 752

25. BakhetiaM

CharltonW

AtkinsonHJ

McPhersonMJ

2005 RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Mol Plant Microbe Interact 18 10 1099 1106

26. KimberMJ

McKinneyS

McMasterS

DayTA

FlemingCC

2007 flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. Faseb J 21 4 1233 1243

27. ShinglesJ

LilleyCJ

AtkinsonHJ

UrwinPE

2007 Meloidogyne incognita: molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp Parasitol 115 2 114 120

28. DalzellJJ

McMasterS

FlemingCC

MauleAG

2010 Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. Int J Parasitol 40 1 91 100

29. VineyME

ThompsonFJ

2008 Two hypotheses to explain why RNA interference does not work in animal parasitic nematodes. Int J Parasitol 38 1 43 47

30. LendnerM

DoligalskaM

LuciusR

HartmannS

2008 Attempts to establish RNA interference in the parasitic nematode Heligmosomoides polygyrus. Mol Biochem Parasitol 161 1 21 31

31. BoissonB

CJaquesJ

ChoumetV

MartinE

ZXuJ

2006 Gene silencing in mosquito salivary glands by RNAi. FEBS Letters 580 1988 1992

32. PfafflMW

2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29 9 e45

33. LaneySJ

ButtaroCJ

ViscontiS

PilotteN

RamzyRM

2008 A reverse transcriptase-PCR assay for detecting filarial infective larvae in mosquitoes. PLoS Negl Trop Dis 2 6 e251

34. GuilianoDB

HongX

McKerrowJH

BlaxterML

OksovY

2004 A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling. Mol Biochem Parasitol 136 2 227 242

35. EricksonSM

XiZ

MayhewGF

RamirezJL

AliotaMT

2009 Mosquito infection responses to developing filarial worms. PLoS Negl Trop Dis 3 10 e529

36. DalzellJJ

McMasterS

JohnstonMJ

KerrR

FlemingCC

2009 Non-nematode-derived double-stranded RNAs induce profound phenotypic changes in Meloidogyne incognita and Globodera pallida infective juveniles. Int J Parasitol 39 13 1503 1516

37. ChristensenBM

SutherlandDR

1984 Brugia pahangi: Exsheathment and midgut penetration in Aedes aegypti. Transactions of the American Microscopical Society 103 4 423 433

38. MurthyPK

SenAB

1981 Sequential development changes in microfilariae of subperiodic Brugia malayi to infective larvae in susceptible strain of Aedes aegypti (Macdonald). J Commun Dis 13 2 102 109

39. BartholomayLC

ChristensenBM

2002 Vector-parasite interactions in mosquito-borne filariasis.

KleiT

RajanT

The Filaria. 1 ed Boston Kluwer Academic Publishers 9 19

40. BeckettEB

BoothroydB

1970 Mode of nutrition of the larvae of the filarial nematode Brugia pahangi. Parasitol 60 21 26

41. AliotaMT

FuchsJF

RocheleauTA

ClarkAK

HillyerJF

2010 Mosquito transcriptome profiles and filarial worm susceptibility in Armigeres subalbatus. PLoS Negl Trop Dis 4 4 e666

42. TimmonsL

CourtDL

FireA

2001 Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263 1–2 103 112

43. ShannonAJ

TysonT

DixI

BoydJ

BurnellAM

2008 Systemic RNAi mediated gene silencing in the anhydrobiotic nematode Panagrolaimus superbus. BMC Mol Biol 9 58

44. RicherJK

HuntWG

SakanariJA

GrieveRB

1993 Dirofilaria immitis: effect of fluoromethyl ketone cysteine protease inhibitors on the third- to fourth-stage molt. Exp Parasitol 76 3 221 231

45. LustigmanS

McKerrowJH

ShahK

LuiJ

HuimaT

1996 Cloning of a cysteine protease required for the molting of Onchocerca volvulus third stage larvae. J Biol Chem 271 47 30181 30189

46. HashmiS

BrittonC

LiuJ

GuilianoDB

OksovY

2002 Cathepsin L is essential for embryogenesis and development of Caenorhabditis elegans. J Biol Chem 277 5 3477 3486

47. McGonigleL

MousleyA

MarksNJ

BrennanGP

DaltonJP

2008 The silencing of cysteine proteases in Fasciola hepatica newly excysted juveniles using RNA interference reduces gut penetration. Int J Parasitol 38 2 149 155

48. HuangG

AllenR

DavisEL

BaumTJ

HusseyRS

2006 Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103 39 14302 14306

49. SteevesRM

ToddTC

EssigJS

TrickHN

2006 Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33 991 999

50. SindhuAS

MaierTR

MitchumMG

HusseyRS

DavisEL

2009 Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60 1 315 324

51. CoatesCJ

JasinskieneN

MiyashiroL

JamesAA

1998 Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 95 7 3748 3751

52. JasinskieneN

CoatesCJ

BenedictMQ

CornelAJ

RaffertyCS

1998 Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. PNAS 95 7 3743 3747

53. CatterucciaF

NolanT

LoukerisTG

BlassC

SavakisC

2000 Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405 959 962

54. KokozaV

AhmedA

ChoWL

JasinskieneN

JamesAA

2000 Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 97 16 9144 9149

55. MoreiraLA

EdwardsMJ

AdhamiF

JasinskieneN

JamesAA

2000 Robust gut-specific gene expression in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A 97 20 10895 10898

56. FranzAW

Sanchez-VargasI

AdelmanZN

BlairCD

BeatyBJ

2006 Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci U S A 103 11 4198 4203

57. AllenML

ChristensenBM

2004 Flight muscle-specific expression of act88F: GFP in transgenic Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Int 53 307 314

58. McKerrowJH

1999 Development of cysteine protease inhibitors as chemotherapy for parasitic diseases: insights on safety, target validation, and mechanism of action. Int J Parasitol 29 6 833 837

59. MacDonaldWW

1962 The selection of a strain of Aedes aegypti susceptible to infection with semi-periodic Brugia malayi. Ann Trop Med Parasit 56 368 372

60. BeerntsenBT

BartholomayLC

LoweryRJ

2007 Penetration of the mosquito midgut is not required for Brugia pahangi microfilariae to avoid the melanotic encapsulation response of Armigeres subalbatus. Vet Parasitol 144 3-4 371 374

61. HayesRO

1953 Determination of a physiological saline solution for Aedes aegypti (L.). Journal of Economic Entomology 46 4 624 627

62. GallupJM

SowFB

Van GeelenA

AckermannMR

2009 SPUD qPCR Assay Confirms PREXCEL-Q Softwares Ability to Avoid qPCR Inhibition. Curr Issues Mol Biol 12 3 129 134

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#